

Global prevalence of internet addiction among university students: a systematic review and meta-analysis

Xin Liu^{a,b,c,*}, Zhen Gui^{a,b,*}, Zi-Mu Chen^{a,b,*}, Yuan Feng^{d,*}, Xiao-dan Wu^{a,b}, Zhaohui Su^e, Teris Cheung^f, Gabor S. Ungvari^{g,h}, Xuan-Chen Liu^a, Yi-Ran Yan^a, Chee H. Ngⁱ and Yu-Tao Xiang^{a,b}

Purpose of review

The prevalence of internet addiction among university students has been extensively studied worldwide, however, the findings have been mixed. This meta-analysis aimed to examine the global prevalence of internet addiction in university students and identify its potential moderators.

Recent findings

A total of 101 eligible studies, comprising 128020 participants across 38 countries and territories, were included. The pooled global prevalence of internet addiction among university students was 41.84% [95% confidence interval (95% CI): 35.89–48.02]. Significant differences in the prevalence were observed across different income levels, regions, periods of COVID-19 pandemic, and cut-off values of the Internet Addiction Test (IAT). Sample size was negatively associated with internet addiction prevalence, while depression prevalence was positively associated with internet addiction prevalence. Male students had a significantly higher risk of internet addiction compared to female students [pooled odd ratio (OR): 1.32, 95% CI: 1.19–1.46].

Summary

This meta-analysis found that the prevalence of internet addiction was high among university students, which has increased since the COVID-19 pandemic. Screening and intervention measures to address internet addiction should prioritize students with an increased risk including male students, those from lower-income regions and those with depression.

Keywords

internet addiction, meta-analysis, prevalence, university students

INTRODUCTION

With the acceleration of urbanization worldwide, internet and digital technologies, including artificial intelligence, have rapidly increased alongside the expansion of urban areas. Internet- and artificial intelligence (AI) powered systems now play a significant role in urban infrastructures, such as traffic management, public safety and education [1-4]. As a result, internet usage has increased rapidly, becoming an indispensable part of daily life. However, this digital transformation has raised concerns about internet addiction in both research and clinical practice globally. Furthermore, AI driven internet platforms personalizing and optimizing online experiences may further intensify the risk of internet addiction [5]. The concept of internet addiction, first introduced in the late 1990s, is characterized by ^aUnit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, ^bCentre for Cognitive and Brain Sciences, University of Macau, Macao SAR, ^cDepartment of Computational Biology and Medical Big Data, Shenzhen University of Advanced Technology, Shenzhen, ^dBeijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, ^eSchool of Public Health, Southeast University, Nanjing, ^fSchool of Nursing, Hong Kong Polytechnic University, Hong Kong SAR, China, ^gSection of Psychiatry, University of Notre Dame Australia, Fremantle, ^hDivision of Psychiatry, School of Medicine, University of Western Australia, Perth, Western Australia and ⁱDepartment of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, Victoria, Australia

Correspondence to Dr Yu-Tao Xiang, 1/F, Building E12, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China. E-mail: xyutly@gmail.com

*Xin Liu, Zhen Gui, Zi-Mu Chen, Yuan Feng contributed equally to this work.

Curr Opin Psychiatry 2025, 38:182–199 DOI:10.1097/YCO.000000000000994

www.co-psychiatry.com

Volume 38 • Number 3 • May 2025

KEY POINTS

- The pooled global prevalence of internet addiction in university students was 41.84% (95% CI: 35.89–48.02).
- Income level, region, stage of the COVID-19 pandemic, IAT-20 cut-off values, sample size, and the prevalence of depression were moderators influencing the prevalence of internet addiction.
- Male university students had a significantly higher risk of internet addiction compared to their female counterparts.

excessive and problematic internet use [6]. Internet addiction was initially conceptualized as a generalized impulse control disorder [7], but other researchers argued that internet addiction should be classified as a behavioral addiction [8,9]. Regardless, internet addiction has emerged as a significant public health concern due to the negative physical and psychological health effects, including mental health problems such as depression, anxiety, loneliness, and poor sleep quality [10^{••},11,12[•]].

It is well recognized that young adults and adolescents are particularly vulnerable to develop internet addiction [13,14]. In this sub-population, university students are among the most active internet users, making them particularly susceptible to internet addiction. Several meta-analyses have examined the prevalence of internet addiction among university students across different countries and regions [15^{••},16–19]. For instance, a meta-analysis of 11 studies reported that the internet addiction prevalence was 43.42% [95% confidence interval (95% CI): 28.54–58.31] among college students in Ethiopia [18], while another meta-analysis of 70 studies found that the corresponding rate was 11.3% (95% CI: 10.1–12.5) in China [16]. The wide variation in the pooled prevalence of internet addiction indicates the important influence of geographic and socioeconomic factors as well as other demographic and health-related factors on internet addiction prevalence among university students. To facilitate the development of prevention and treatment strategies, understanding the global prevalence of internet addiction and its demographic and health-related moderators is crucial for resource allocation to address the widespread problem of internet addiction.

Substantial heterogeneity between studies on internet addiction prevalence among university students has been observed in previous meta-analyses [15^{••},16]. Apart from differences in various demographic and health-related factors, the heterogeneity could be partly attributed to the use of different assessment tools [16,18,20]. Hence, it is critical to evaluate the prevalence of internet addiction using specific standardized assessment tools to enable meaningful comparison. Despite the availability of numerous assessment tools on internet addiction in the past years, there is currently no consensus on a single standardized assessment for internet addiction, largely due to the broad spectrum of online behaviors, the blurred division between internet use and abuse, and the ongoing debate regarding the psychopathology of internet addiction [21]. However, of the assessment tools, the 20-item Internet Addiction Test (IAT) is the first validated instrument to assess internet addiction that covers the key characteristics of pathological internet use [21,22], and is also the most widely used internet addiction assessment tool globally [20].

Given the above considerations, this meta-analysis aimed to evaluate the global prevalence of internet addiction in university students as assessed by the IAT-20 and identify its potential moderators (e.g., demographic and health-related).

MATERIALS AND METHODS

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidance [23] and Meta-Analysis of Observational Studies in Epidemiology (MOOSE) [24], and was registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY; registration number: INPLASY2024110114). Major international databases (PubMed, Web of Science, Embase, and PsycINFO) were systematically and independently searched by two researchers (X.L. and Z.C.) from their inception to April 17, 2024, using the search terms shown in Table S1, http://links.lww.com/YCO/A90.

According to the PICOS acronym, the inclusion criteria of the meta-analysis were as follows: Participants (*P*): undergraduate university students; intervention (I): not applicable; control (C): not applicable; outcomes (O): the prevalence of internet addiction in college students measured by the IAT-20 scale with specified cutoff values [6,22]; study design (S): cross-sectional study or cohort studies (only baseline data of cohort studies were extracted). The exclusion criteria were as follows: studies published in non-English languages; studies without a description of sampling method. Three researchers (X.L., Z.G., and Z.C.) independently screened the titles and abstracts of relevant literature and then read the full texts for eligibility. In the case of any disagreement, consensus was achieved via discussion with a senior researcher (Y.T.X.).

The three researchers independently extracted data from eligible studies using a standardized extraction form. Study characteristics (e.g., the title, first author, publication year, journal, survey time, sampling method, country, study design and sample size) and participant characteristics (e.g., sex, residency, smoking habit, drinking habit, and related mental health condition (i.e., depression, sleeping problems, and anxiety) were extracted. Internet addiction assessment data were also extracted, including IAT-20 cut-off values, number of participants with internet addiction and mean IAT-20 total score.

An eight-item assessment instrument for epidemiological studies was used to assess the study quality [25,26], described in Table S2, http://links.lww. com/YCO/A90. The total score ranged from 0 to 8, and the study quality was classified as low (0–3 points), moderate (4–6 points), or high (7–8 points). Any disagreement was addressed with the senior author to resolve the discrepancy.

All data analyses were conducted with R (*version* 4.3.1, The R Foundation, Vienna, Austria), using the *meta* package (*version* 4.3.3). Prevalence data were logit transformed or log transformed when appropriate. The pooled prevalence of internet addiction and its 95% CIs or odds ratio (OR) were calculated by random-effects model. Heterogeneity among studies were evaluated using the I^2 statistic, with a value above 50% indicating high heterogeneity [27].

To explore the sources of heterogeneity, subgroup analyses and meta-regression were conducted for categorical variables and continuous variables, respectively. The subgroup analyses focused on categorical variables: income level (i.e., high income, upper middle income, low middle income, and low income) [28], region (i.e., East Asia & Pacific, Europe & Central Asia, Latin America & Caribbean, Middle East & North Africa, South Asia, and Sub-Saharan Africa), Corona Virus Disease 2019 (COVID-19) pandemic (i.e., before and during) [29], sampling method (i.e., probability sampling and nonprobability sampling), sex (i.e., male and female), and cut-off value (i.e., ≥ 20 , >30, ≥ 40 , ≥ 50 , and >50). Metaregression analyses were conducted based on the following continuous variables: sample size, mean age, total study quality assessment score, proportion of male, urban residency, smoking, drinking, depression, sleeping problem and anxiety.

Publication bias was assessed using Funnel plots and Egger's test. The stability of the results was tested using the sensitivity analysis through the "leave-one-out method", where individual studies were removed sequentially. *P* value less than 0.05 was considered statistically significant (two-tailed).

RESULTS

Of a total of 5537 records initially retrieved, 1542 duplicate records were excluded. Among the remaining 3995 records, 3269 were removed after screening the title and abstracts. After the full text of 726 potentially eligible studies were examined, 723 were retrieved. Finally, 101 studies were included in this meta-analysis, and the details are described in Fig. 1.

Study characteristics

As shown in Table 1 [59–159], the included studies comprised a total of 128 020 participants across 38 countries and territories, with sample sizes ranging from 120 to 30 581. Most were conducted in South Asia (29 studies) and Middle East & North Africa (26 studies). The mean age of the study samples ranged from 15.3 to 26.3 years. More than half of the studies were conducted before the COVID-19 pandemic (54.5%). Nineteen studies had reported depression, while 16 studies reported sleeping problems and 13 studies reported anxiety. The quality assessment scores ranged from 3 to 8, with 1 study rated as low quality (1.0%), 82 studies as moderate quality (81.2%), and 18 studies as high quality (17.8%) (Table S2, http://links.lww.com/YCO/A90).

Pooled prevalence of IA in university students

Among the 101 included studies, the prevalence rates of internet addiction in university students ranged from 6.9 to 98.3%, and the pooled prevalence of internet addiction was 41.84% (95% CI: 35.89–48.02, $I^2 = 99.6\%$) (Fig. 2).

Subgroup and meta-regression analyses

There were significant differences in the pooled prevalence of internet addiction across income levels (P=0.007), with the highest prevalence in lowincome countries (55.5%; 95% CI: 37.9–71.8; *n*=8; $I^2 = 99.1\%$), followed by lower-middle-income countries (50.3%; 95%CI: 41.6–58.9; n = 44; $I^2 = 99.1\%$), high-income countries (32.6%; 95%) CI: 18.5–50.6; n = 12; $I^2 = 99.2\%$), and upper-middle-income countries (31.0%; 95% CI: 23.0-40.3; n = 37; $I^2 = 99.6\%$). Similarly, there were significant regional differences (P < 0.001), with the highest prevalence in Sub-Saharan Africa (56.8%; 95% CI: 40.5–71.9; n = 10; $I^2 = 98.9\%$), followed by the Middle East & North Africa (49.8%; 95% CI: 37.9–61.6; n=26; $I^2=98.7\%$), South Asia (49.1%; 95% CI: 37.8–60.5; n = 29; $I^2 = 99.2\%$), East Asia & Pacific $(30.6\%; 95\% \text{ CI: } 20.6-42.7; n = 18 I^2 = 99.7\%)$, Latin

184 www.co-psychiatry.com

FIGURE 1. Flow diagram of study selection procedure.

America & Caribbean (24.6%; 95% CI: 14.1–39.4; n = 5; $I^2 = 99.0\%$), and Europe & Central Asia (21.2%; 95% CI: 13.3–32.1; n = 13; $I^2 = 99.1\%$).

The pooled prevalence of internet addiction was significantly higher during the COVID-19 pandemic (P = 0.021), with prevalence rates of 37.6% (95% CI: 30.2–45.7; n = 55; $I^2 = 99.5\%$) and 54.1% (95% CI: 42.6–65.2; n = 23; $I^2 = 99.5\%$) before and during the pandemic, respectively. There were significant differences in the prevalence of internet addiction among studies using different IAT-20 cut-off values (P < 0.001). The most common cut-off values were at least 20, more than 30, at least 40, at least 50, and more than 50, with pooled prevalence rates of 81.3% (95% CI: 67.9–90.0; n = 9; $I^2 = 96.3\%$), 67.3% (95%) CI: 58.7–74.9; n = 19; $I^2 = 98.2\%$), 52.7% (95% CI: 42.2–62.8; n = 9; $I^2 = 97.1\%$), 27.4% (95% CI: 22.4– 33.2; n = 52; $I^2 = 99.4\%$), and 16.9% (95% CI: 7.9– 32.3; n=3; $I^2=99.0\%$), respectively. In contrast, no significant difference was found between studies with different sampling methods (P=0.145) and sex (P=0.146) (Table 2).

In meta-regression analyses (Table 3), sample size was negatively associated with the prevalence

of internet addiction (β =-0.0001, *z*=-2.2781, *P*=0.023), while depression prevalence was positively associated with the internet addiction prevalence (β =0.0283, *z*=4.3354, *P*<0.001). No significant associations were found between age, sex, urban residency, smoking, drinking, sleeping problems, anxiety, or study quality and the prevalence of IA.

Comparison of prevalence of internet addiction between male and female students

There were 56 studies that reported the prevalence of internet addiction in both male and female participants, including 25 258 male participants and 37 280 female participants. Male university students had a significantly higher risk of having internet addiction compared to female students, with a pooled OR of 1.32 (95% CI: 1.19–1.46) (Fig. 3).

Publication bias and sensitivity analyses

Funnel plot assessment and Egger's test both revealed significant publication bias in both meta-analyses

The impact of urbanisation on mental health

										Prevalence	e of Internet ad	diction (%)								
No. Ref	Study site	income level	Survey time	COVID- 19 pan- demic	Stud y design	Sam- pling method	Age [mean (SD) / range]	Instru- ment/ cut-off	mean score of mea- sures	Total (IA/ sample size)	Male (IA/sample size)	Female (IA/sample size)	Male (%)	Urben resi- dence (%)	Smoking 1 (%)	Drinking	Depres- sion (%)	Sleeping problem (%)	Anxiety (%)	Quality assess- ment score
1 Abdel-Salam <i>et al.</i> , 201' [59]	Saudi 9 Arabia	т	2016-2017	Before	CS	ž	20.9 (1.7)	IAT-20≥50	ž	51.4 (190/370)	Ж	51.4 (190/370)	0.0	Я	ж	Ж	ž	Ж	Ж	ъ,
2 Ademoyegur et al., 202- [60]	n Nigeria 4	ΓW	January-June 2023	During	S	U	21.3 (2.6)	IAT-20 > 30	34.7	57.6 (294/510)	ž	Х	37.6	ZR	R	ZR	Ж	ZR	52.6	4
3 Adhikari <i>et c</i> 2022 [61]	<i>il.</i> , Nepal	ΓW	June-August 2019	Before	CS	×	16–25	IAT-20≥20	R	73.0 (260/356)	74.2 (155/209)	71.4 (105/147)	58.7	R	Я	Ж	Ж	Х	Ж	9
4 Al-Gamal <i>et al.</i> , 201 [62]	Jordan 4	ΓW	2013-2014	Before	S	SR	21.2 (1.4)	IAT-20≥ 50	ž	40.0 (235/587)	39.0 (98/251)	40.8 (137/336)	42.8	ZR	R	ZR	Х	ZR	R	~
5 Ali <i>et al.</i> , 2017 [63]	Egypt	ΓW	October- November 2016	Before	S	M; S	17-25	IAT-20≥ 50	Х	47.7 (280/587)	56.9 (119/209)	42.6 (161/378)	35.6	61.8	RR	Z	Я	ZR	Z	~
6 Amano et al. 2023 [64]	., Ethiopia		August 2021	During	C.S	M; CS	23.0 (2.3)	IAT-20 > 30	R	53.6 (399/745)	Ж	NR	65.0	60.0	4.8	34.0	43.5	ZR	R	Ŷ
7 Angane <i>et α</i> 2020 [65]	I., India	ΓW	R	R	C-S	S	19.3 (1.5)	IAT-20≥50	35.6	18.0 (36/200)	R	Хĸ	51.0	R	R	NR	Х	R	ZR	7
8 Ansari <i>et al.</i> , 2016 [66]	Iran	WN	2015	Before	C.S	S	21.4 (2.6)	IAT-20≥50	41.4	25.3 (96/380)	33.8 (49/145)	20.0 (47/235)	38.2	Z	Z	R	R	ZR	Хĸ	5
9 Araby <i>et al.</i> , 2020 [67]	Egypt	ΓW	April-May 2019	Before	C.S	CS	18–23	IAT-20≥50	R	74.2 (560/755)	R	ХR	27.4	52.8	R	NR	Хĸ	R	R	Ŷ
10 Asrese <i>et al.</i> 2020 [68]	, Ethiopia	_	February- March 2018	Before 3	C.S	SR	21.4 (1.7)	IAT-20≥ 50	ž	35.2 (286/812)	33.6 (180/535)	38.3 (106/277)	65.9	ZR	R	R	Х	R	Ж	S.
11 Aznar-Díaz et al., 202([69]	Mexican 0 and Spain	H ;MU	October- December 2019	Before	CS	U	20.8 (3.4)	IAT-20 > 50	31.8	11.7 (89/758)	13.2 (36/272)	10.9 (53/486)	35.9	ZR	RR	ХR	NR	ZR	Х	5
12 Banal <i>et al.</i> , 2023 [70]	Jammu	ΓW	R	R	C.S.	R	Ж	IAT-20≥50	35.9	15.4 (77/500)	16.7 (41/245)	14.1 (36/255)	49.0	R	R	R	ХR	37.4	Ж	2
13 Bener <i>et al.</i> , 2013 [71]	Qatar	т	September 2009- October 2010	Before	CS	M; S	X	IAT-20≥50	ž	19.1 (162/847)	R	Z	Х	Z	ž	X	Х	Х	X	Ŷ
14 Bhandari et al., 201; [72]	Nepal	ΓW	September- November 2015	Before	S	~	21.0 (2.2)	IAT-20≥40	37.1	35.4 (332/937)	ž	Z	45.4	Z	١.6	19.1	21.2	ZR	Х	5
15 Biolcati et al.,2017 [73]	Italy	т	NR	ХR	CS	U	18-36	IAT-20≥50	R	10.1 (44/436)	Z	R	R	ZR	R	Х _R	NR	Ж	Хĸ	ю
16 Bisen <i>et al.</i> , 2020 [74]	India	ΓW	January 2016 April 2017	5- Before	C.S	R	18-24	IAT-20≥ 50	36.1	12.5 (200/1600)	13.6 (109/800)	11.4 (91/800)	50.0	64.3	R	R	R	R	Ж	7
17 Brito et al., 2023 [75]	Brazil	WN	2016-2017	Before	C.S	¥	Ж	IAT-20≥40	R	47.9 (744/1553)	44.3 (252/569)	49.9 (491/983)	36.6	R	0.11	44.9	Ж	51.4	Ж	~
18 Cai et al., 2023 [76]	China	MU	March-April 2023	During	C.S	υ	18–20	IAT-20≥40	41.3	55.8 (1177/2108)	50.8 (486/957)	60.0 (691/1151)	45.4	ZR	Х	Ж	Я	Хĸ	Ж	~

186 www.co-psychiatry.com

Volume 38 • Number 3 • May 2025

Table 1	Continued																			
										Prevalence	of Internet add	liction (%)								
No. Ref	Study site	Income level	Survey time	COVID- 19 pan- demic	Study design	Sam- pling method	Age [mean (SD) / range]	Instru- ment/ cut-off	mean score of mea- sures	Total (IA/ sample size)	Male (IA/sample size)	Female (IA/ sample size)	Male (%)	Urben resi- dence (%)	Smoking D (%)	rrinking D (%) si	SI Depres- pi ion (%)	leeping roblem A (%)	Q a nxiety (%)	Jality Sess- nent core
19 Cai <i>et al.,</i> 2021 [77	China	MU	September- October 2020	During	CS	CSS	19.7 (1.4)	IAT-20≥50	ž	23.3 (249/1070)	25.7 (68/265)	22.5 (181/805)	24.8	57.3	ž	ž	ž	ž	¥	v
20 Cao et al., 2011 [78	China]	MU	March 2008	Before	C.S	M; CS	R	IAT-20≥50	R	6.9 (350/5061)	R	ZR	Ä	R	Ж	Ж	R	R	¥	9
21 Chen <i>et al.</i> 2017 [79	, China]	ΜU	R	Ж	CS	M; CS	20.3 (1.1)	IAT-20 > 50	ZR	36.9 (202/547)	42.5 (102/240)	32.6 (100/307)	43.9	Ä	9.5	14.3	Ж	X	¥	Ŷ
22 Cincik <i>et a</i> 2023 [80	'., Turkey]	MU	2019–2020	Before & During	C.S	2	18-35	IAT-20 > 50	Хĸ	9.7 (138/1419)	11.0 (55/500)	9.0 (83/919)	35.2	R	Ж	Ж	R	ZR	¥	Ŷ
23 Condori- Meza et (2021 [81	Peru <i>یاد</i>]	WN	December- February 2021	During	C.S	υ	21.8 (3.3)	IAT-20≥ 50	ž	14.7 (124/844)	17.6 (53/301)	13.1 (71/543)	35.7	ZR	3.8	27.4	Z	Z	¥	5
24 Corrêa Rar et al., 20 [82]	igel Brazil 22	MU	October 2017-June 2018	Before	S	~	ž	IAT-20≥ 50	Х	20.0 (84/420)	21.8 (47/216)	18.1 (37/204)	51.4	ZR	ZR	Z	25.7	22.6	47.9	~
25 Demenech et al., 20 [83]	Brazil 23	MU	August 2016- March 2017	Before	S	~	ž	IAT-20>30	ž	41.7 (428/1026)	43.7 (180/411)	40.6 (249 /614)	40.1	ZR	6.9	75.9	18.7	ZR	¥	\$
26 Dhamnetiy et al., 20 [84]	a India 21	¥	April-May 2019	Before	S	S	ž	IAT-20≥ 50	Х	41.3 (83/201)	42.4 (56/132)	39.1 (27/69)	65.7	ZR	ZR	Z	Z	ZR	24	5
27 Ehsan et. a 2021 [85	l., Pakistan]	M	July 2018- August 2019	Before	C.S	S	20.9 (1.5)	IAT-20 ≥ 20	R	90.3 (343/380)	92.3 (131/142)	89.1 (212/238)	37.4	Ä	R	Ж	R	ZR	¥	5
28 Ercan <i>et al.</i> 2021 [86	, Turkey]	MU	2019–2020	Before & During	C.S	S	R	IAT-20≥50	R	17.6 (172/980)	NR	R	R	R	R	R	R	ZR	¥	5
29 Esen <i>et al.</i> , 2021 [87	Turkey]	WN	May- December 2017	Before	S	S	21.1 (2.0)	IAT-20≥50	31.8	16.8 (211/1257)	25.5 (93/364)	13.2 (118/893)	29.0	R	15.9	4.1	Х	Ж	24	5
30 Feizy <i>et al.</i> 2020 [8£	Iran	WN	September- December 2018	Before	S	Census	22.3 (3.0)	IAT-20≥ 50	Х	21.3 (64/300)	Х	ž	42.1	ZR	ZR	Z	Z	ZR	24	Ŷ
31 Gedam <i>et</i> 2016 [85	<i>al.,</i> India]	ΓV	August- September 2015	Before	S	~	19.7 (1.3)	IAT-20≥50	Х	21.6 (129/597)	30.6 (45/147)	18.7 (84/450)	24.6	R	ХR	Ř	41.2	Ж	44.1	80
32 George et 2019 [90	a <i>l.</i> , India]	M	R	R	C.S	×	21.3 (1.3)	IAT-20≥20	32.2	70.5 (141/200)	Х	R	50.0	R	Х	R	R	ZR	¥	4
 33 Ghamari et al., 20 [91] 	lran 1 1	MU	2009	Before	S	S	21.0 (1.4)	IAT-20 ≥ 50	32.7	10.8 (50/462)	17.9 (29/162)	7.0 (21/300)	35.1	89.2	Z	Z	ž	ZR	27	5
34 Ghosh et a 2018 [92	<i>I.,</i> India]	M	November- December 2015	Before	C.S	ш	Х	IAT-20 ≥ 20	Х Х	55.5 (86/155)	64.0 (55/86)	44.9 (31/69)	55.5	77.4	R	Х	Х Х	R	24	5
35 Güneş <i>et α</i> 2023 [93	<i>L.</i> , Turkey]	MU	October- December 2020	During	CS	~	21.2 (2.0)	IAT-20≥50	28.0	8.4 (49/581)	Z	Z	21.0	Х	18.6	9.5	ХR	R	27	5

0951-7367 Copyright @ 2025 Wolters Kluwer Health, Inc. All rights reserved.

Copyright $\ensuremath{\mathbb{C}}$ 2025 Wolters Kluwer Health, Inc. All rights reserved.

The impact of urbanisation on mental health

Τα	ble 1 (C	ontinuea	()																		
											Prevalence	of Internet ad	diction (%)								
Š	Ref	Study site	Income	Survey time	COVID- 19 pan- demic	Study design	Sam- pling method	Age [mean (SD) / range]	Instru- ment/ cut-off	mean score of mea- sures	Total (IA/ sample size)	Male (IA/sample size)	Female (IA/ sample size)	Male (%)	Urben resi- dence (%)	Smoking (%)	Drinking (%)	Depres- sion (%)	Sleeping problem (%)	Anxiety (%)	Quality 255655- ment 5core
36	Guo <i>et al.,</i> 2021 [94]	China	WN	2019	Before	S	M; CS	19.9 (1.6)	IAT-20≥50	33.0	8.7 (2661/30581)	Ж	RR	42.3	ž	26.0	69.0	Ж	Ъ	¥	~
37	Gupta <i>et al.,</i> 2018 [95]	India	۲	November 2015- April 2018	Before	C.S.	2	19.1 (1.0)	IAT-20≥50	ž	25.3 (96/380)	26.3 (62/236)	23.6 (34/144)	62.1	Z	ZR	ZR	R	ZR	R	Ŷ
38	Hammad et al., 2024 [96]	Saudi Arabia	т	April- May 2023	During	C.S	۲	21.2 (3.3)	IAT-20≥20	45.4	89.1 (301/338)	ž	R	52.7	ZR	28.4	R	R	ZR	Х	5
39	Haque <i>et al.,</i> 2016 [97]	Malaysia	MU	October 2015	5 Before	CS	~	22.0 (1.5)	IAT-20 > 30	43.5	81.0 (113/139)	ž	ХR	40.3	Х	Ж	Х	R	Ж	R	Ŷ
40	Hussain <i>et al.</i> , 2018 [98]	, Pakistan	ΓW	January- June 2015	Before	CS	~	R	IAT-20 > 40	R	41.7 (50/120)	48.1 (25/52)	36.8 (25/68)	43.3	Ä	Хĸ	Ж	Х	NR	ХR	5
41	lbrahim <i>et al.</i> , 2022 [99]	Egypt	ΓW	2019-2020	Before & During	CS	S	21.9 (1.1)	IAT-20≥50	57	66.0 (212/321)	ž	ХR	45.5	72.3	Х	R	88.2	R	R	4
42	Jaafar <i>et al.,</i> 2022 [100]	Malaysia	MU	July-December 2021	r During	C.S	s	21.0 (1.4)	IAT-20≥40	49.5	81.5 (216/265)	Ж	Х	50.9	R	R	Х	X	ХR	R	5
43	Jagan <i>et al.,</i> 2023 [101]	India	¥	September- October 2018	Before	C.S	2	17-19	IAT-20≥50	51.9	47.4 (93/196)	45.5 (40/88)	49.1 (53/108)	44.9	Z	Z	ZR	Х ^R	ZR	Z	Ŷ
44	Jain <i>et al.,</i> 2020 [102]	India	M	R	R	C.S	~	Ж	IAT-20 ≥ 70	R	12.5 (52/417)	Ж	NR	Хĸ	R	R	Ж	Ж	NR	R	~
45	Jaiswal <i>et al.</i> , 2020 [103]	India	M	R	R	C.S	2	19.9 (2.0)	IAT-20 > 30	50.3	93.8 (288/307)	Х	Х	ž	ZR	R	R	R	NR	R	5
46	Kandri <i>et al.,</i> 2014 [104]	Greece	т	R	NR	C-S	U	20.8 (2.2)	IAT-20 ≥ 40	42.7	58.8 (303/515)	67.2 (119/177)	54.4 (184/338)	34.4	R	R	Ж	Ж	R	R	4
47	Karimy <i>et al.</i> , 2020 [105]	Iran	MU	2019	Before	CS	S	21.0 (3.2)	IAT-20≥50	R	39.0 (109/279)	45.7 (16/35)	38.1 (93/244)	12.5	R	7.9	R	Ж	R	R	9
48	Kashfi <i>et al.,</i> 2023 [106]	Iran	MU	2018	Before	C-S	s	Ж	IAT-20≥50	R	31.6 (53/168)	Х	Х	R	R	R	Ж	Ж	27.6	R	2
49	Khan <i>et al.,</i> 2017 [107]	Pakistan	ΓW	January-May 2015	Before	C.S	U	19.3 (1.0)	IAT-20≥50	38.1	16.7 (54/322)	14.3 (25/175)	19.7 (29/147)	54.3	Ä	R	R	Х	NR	ZR	4
50	Khanbabaei <i>et al.</i> , 2022 [108]	lan	MU	Х	Ř	S	υ	24.3 (4.2)	IAT-20 ≥ 40	40.1	47.7 (125/262)	ž	R	56.1	Х	Х	ZR	ХR	NR	Х ^ж	4
51	Khazaie <i>et al.</i> 2023 [109]	Iran	MU	December 2017-May 2018	Before	S	Ś	22.8 (3.1)	IAT-20 ≥ 50	Х	68.8 (289/420)	ž	Z	46.7	ž	Х	Z	ХR	ZR	ХR	4
52	Ksiksou <i>et al.,</i> 2023 [110]	Morocco	Γ <u>γ</u>	November 2022- January 2023	During	C.S	2	20.1 (1.2)	IAT-20 > 30	31.4	68.3 (265/388)	Z	X	28.9	ž	Ж	ž	ž	Z	Ж	Ŷ
53	Kumari <i>et al.</i> , 2022 [111]	India	M	January-March 2021	h During	C.S	Sdd	ž	IAT-20 > 30	Ж	70.5 (155/220)	79.7	56.3 (49/87)	60.5	ž	Ж	R	Ж	67.3	ZR	5
54	Lan <i>et al.,</i> 2020 [112]	Vietnam	M	ZR	R	C.S	Я	R	IAT-20 70	ZR	25.3 (109/431)	27.8 (30/108)	24.5 (79/323)	25.1	R	R	R	39.2	R	43.9	~

188 www.co-psychiatry.com

Volume 38 • Number 3 • May 2025

		Quality assess- ment score	5	ω	Ω.	4	5	~	~	Ŷ	4	S,	Ŷ	Ŷ	5	4	5	4	4	Ω.
		Anxiety (%)	30.3	R	Х	Z	Ä	R	28.0	ZR	Z	Х ^R	Ж	Х ^R	R	R	Х	Х	R	Ř
		Sleeping problem (%)	Я	R	64.6	Z	R	NR	ZR	ZR	ZR	Z	Ä	ZR	R	20.0	ХR	30.6	42.3	ž
		Depres- sion (%)	33.2	Х	Х	Z	Ä	R	23.4	ZR	Z	Z	Ж	Z	Х	Х	Х	51.2	30.2	Z
		Drinking (%)	8.5	R	Х	Х	ZR	R	Z	Х	Ж	NR.	R	Х	ZR	R	Z	Z	ZR	ž
		Smoking (%)	22.2	R	Z	ZR	R	R	Z	ZR	ZR	ZR	R	ZR	R	0	Х	Z	R	ž
		Urben resi- dence (%)	R	Ж	55.4	40.7	¥	R	R	ZR	ZR	Z	Ж	ZR	¥	Ж	ZR	ZR	¥	ZR
		Male (%)	37.9	36.4	55.6	51.6	58.4	R	59.8	ZR	36.2	15.4	65.9	29.0	R	64.3	32.8	45.5	35.8	50.0
	liction (%)	Female (IA/ sample size)	NR	Ж	30.0 (70/233)	14.7 (43/293)	26.4 (55/208)	R	14.1 (43/306)	Х	Х	26.6 (57/214)	R	26.0 (150/578)	ХR	R	24.6 (189/767)	Х	50.2 (1 <i>5</i> 9/317)	87.7 (57/65)
	e of Internet αde	Male (IA/sample size)	NR	ХR	56.2 (164/292)	18.3 (57/312)	34.2 (100/292)	R	23.1 (105/455)	Х	Х	41.0 (16/39)	Х	31.4 (74/236)	NR	R	20.6 (77/374)	Х	50.3 (89/177)	81.5 (53/65)
	Prevalenc	Total (IA/ sample size)	51.9 (1014/1953)	21.4 (1233/5757)	44.6 (234/525)	16.5 (100/605)	31.0 (1 <i>55/5</i> 00)	63.2 (182/288)	19.4 (148/761)	74.4 (444/597)	75.5 (232/307)	28.7 (73/254)	35.2 (286/812)	27.5 (224/814)	45.3 (124/274)	82.9 (107/129)	23.3 (266/1141)	51.9 (200/385)	50.2 (248/494)	84.6 (110/130)
		mean score of mea- sures	33.5	R	X	Ж	38.8	R	Х	Ж	43.9	35.2	Ж	55.3	30.3	32.6	41.3	Х	40.5	R
		Instru- ment/ cut-off	IAT-20 > 30	IAT-20≥50	IAT-20≥50	IAT-20≥ 60	IAT-20 2 50	IAT-20≥50	IAT-20 ≥ 50	IAT-20 ≥ 20	IAT-20 > 30	IAT-20 ≥ 40	IAT-20 2 50	IAT-20≥ 60	IAT-20 > 30	IAT-20 > 30	IAT-20≥50	IAT-20 > 30	IAT-20 ≥ 40	IAT-20≥20
		Age [mean (SD) / range]	17–34	R	21.8 (2.2)	20.3 (2.1)	23.8 (2.4)	X	20.7 (1.8)	ž	ž	21.7 (2.9)	21.4 (1.7)	22.2 (2.0)	X	24.4 (2.8)	23.2 (2.8)	Х	20.9 (1.9)	19–23
		Sam- pling method	C; SB	M; CS	CS	υ	2	¥	M; CS	۲	SR	z	M; S	U	U	2	SB	S	ш	~
		Study design	CS	CS	cs	C.S	CS	CS	CS	C.S	C.S	C.S	C.S	S	CS	CS	CS CS	CS	CS	C.S
		COVID- 19 pan- demic	During	Before	During	Before	Before	Before	Before	Before	During	ЧZ	Before	During	During	R	During	During	ZR	Before
		Survey time	May-June 2022	December 2019	January- October 2021	November- December 2018	May-June 2018	2012-2013	May-June 2019	January- February 2020	October- December 2022	NA	February- March 2018	June- September 2020	April-June 2020	R	January- February 2021	November- December 2021	R	January-April 2012
		Income level	_	MU	ΓW	M	ΓW	M	_	т	_	MU	_	LA	т	M	т	¥	M	¥
ntinued)		Study site	Syria	China	Egypt	Bangla- desh	Tanzania	Tunisia	Ethiopia	Croatia	Sudan	Iran	Ethiopia	India	Portugal	Nigeria	Italy	India	Nepal	Nepal
ble 1 (Co.		Ref	Latifeh <i>et al.,</i> 2022 [113]	Lu <i>et al.</i> , 2020 [114]	Mahmoud et al., 2022 [115]	Mamun <i>et al.,</i> 2020 [116]	Mboya <i>et al.,</i> 2020 [117]	Mellouli <i>et al.,</i> 2018 [118]	Mengistu <i>et al.</i> , 2021 [119]	Miskulin <i>et al.,</i> 2022 [120]	Mohamed et al., 2024 [121]	Mohammad- beigi <i>et al.</i> , 2016 [122]	Muche <i>et al.,</i> 2021 [123]	Nagarajappa et al., 2023 [124]	Oliveira <i>et al.,</i> 2023 [125]	Oluwole <i>et al.,</i> 2021 [126]	Orsolini <i>et al.,</i> 2022 [127]	Parmar <i>et al.,</i> 2022 [128]	Paudel <i>et al.</i> , 2021 [129]	Pramanik <i>et al.</i> , 2012 [130]
Ta		ŚŻ	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	12	72

Copyright $\ensuremath{\mathbb{C}}$ 2025 Wolters Kluwer Health, Inc. All rights reserved.

The impact of urbanisation on mental health

Table 1	(Con	tinued)																			
											Prevalence	of Internet add	liction (%)								
No. Ref	ŏ	tudy site	Income level	Survey time	COVID- 19 pan- demic	Study design	Sam- pling method	Age [mean (SD) / range]	Instru- ment/ cut-off	mean score of mea- sures	Total (IA/ sample size)	Male (IA/sample size)	Female (IA/ sample size)	Male (%)	Urben resi- dence (%)	Smoking (%)	Drinking (%)	Depres- sion (%)	Sleeping problem / (%)	unxiety (%)	Quality assess- ment score
73 Rajasek <i>et al.</i> , [131]	har Inc 2023	dia	¥.	September 2018- October 2019	Before	S	M; S	20.0 (1.9)	IAT-20≥ 30	31.5	51.0 (1038/2035)	53.3 (715/1341)	46.5 (323/694)	65.9	68.3	Ж	ž	34.8	22.0	47.8	v
74 Ramn-A et al., [132]	rbués Sp 2021	ain	т	2019-2020	Before& During	S	U	22.0 (5.4)	IAT-20≥50	41.7	21.2 (148/698)	23.8 (67/281)	19.4 (81/417)	40.3	X	23.4	ZR	18.6	ZR	22.6	5
75 Ranjan 2021	<i>et al.,</i> Inc [133]	dia	ΓW	R	R	C.S	ш	18.0 (0.8)	IAT-20 > 30	Ж	79.5 (679/854)	Х	ZR	67.2	75.9	R	R	Хĸ	R	35.0	4
76 Romero- Rodrig et al., [134]	- Sp Juez 2022	ain	т	February 2020	Before	S	U	22.2 (3.9)	IAT-20≥50	Ж	12.4 (126/1013)	13.9 (35/252)	12.0 (91/761)	24.9	ž	Х	Х	ž	X	ž	4
77 Rosliza 2018	et al., Mc [135]	alaysia	WN	April-August 2016	Before	C.S	CS	19-24	IAT-20≥40	Ж	64.3 (207/322)	75.4 (86/114)	58.2 (121/208)	35.4	Я	Ä	Ж	R	R	Х	~
78 Sahraia et al., [136]	n Ira 2016	Ę	MU	X	Х	S	C	21.5 (2.6)	IAT-20≥ 20	23.2	54.7 (152/278)	R	Х	38.8	ž	Ř	Z	Ж	ZR	Х	4
79 Salama 2020	<i>et al.,</i> Eg [137]	ty pt	М	June-August 2018	Before	CS	ч	20.0 (1.2)	IAT-20 ≥ 50	ž	<i>47.5</i> (289/608)	53.8 (168/312)	40.9 (121/296)	51.3	70.7	68.9	ž	Х	RR	Ж	~
80 Samahc 2019	a <i>et al.</i> , Let [138]	banon	M	ZR	RR	CS	υ	21.9 (2.2)	IAT-20 ≥ 50	ž	26.2 (156/596)	R	ZR	Ж	ZR	R	R	R	NR	Ж	4
81 Sayyah 2019	<i>et al.,</i> Ira [139]	F	MU	2015–2016	Before	C-S	2 Z	19.6 (1.4)	IAT-20 ≥ 20	Ä	98.3 (297/302)	100.0 (78/78)	97.8 (219/224)	25.8	ZR	R	ZR	ZR	NR	Ж	4
82 Selvamo et al., [140]	ani Inc 2022	dia	ΓM	April-August 2020	During	CS	U	ž	IAT-20 > 30	ZR	70.7 (198/280)	Zĸ	Ъ	R	ž	ХR	Ж	Z	Z	Х	4
83 Seo et c 2021	<i>al.,</i> Ko [141]	orea	т	September- December 2019	Before	CS	U	26.3 (4.4)	IAT-20≥ 50	ZR	11.5 (47/408)	11.4 (29/255)	11.8 (18/153)	62.5	R	ZR	ZR	13.5	ZR	ZR	4
84 Shehata 2021	etal., Eg [142]	3y.pt	ΓW	October -November 2020	During	S	S	Z	IAT-20≥50	ZR	87.7 (654/746)	87.8 (215/245)	87.6 (439/501)	32.8	59.2	Х	Ж	ž	ž	ZK	Ś
85 Shi <i>et α</i> 2019	<i>l</i> ., CF [143]	hina	MU	September- November 2017	Before	S	~	19.7 (1.5)	IAT-20 > 30	29.6	44.7 (565/1264)	NR	ХZ	41.1	50.9	Х	Ж	Х	Х	Х _R	Ŷ
86 Siddik ∈ 2024	<i>∍t al.,</i> Ba [144] d	ingla- Jesh	M	July 2022- February 2023	During	S	υ	13-19	IAT-20 50	R	63.0 (4830/7667)	61.7 (1738/2816)	63.7 (3090/4851)	36.7	ž	Ř	Ж	75.0	ZR	0.06	Ś
87 Simchar et al., [145]	roen Th 2018	ailand	MU	2015	Before	CS	υ	20.9 (1.8)	IAT-20 > 30	28.2	36.7 (119/324)	NR	Z	43.2	Х Ж	Х _R	ХR	ХR	ZR	ZR	4
88 Singh e 2017	<i>t al.</i> , Inc [146]	dia	ž	September- December 2015	Before	CS	S	21.1 (0.1)	IAT-20 > 20	24.8	64.1 (123/192)	61.7 (79/128)	68.8 (44/64)	66.7	ž	Ж	Ж	ž	N.	ž	Ŷ

190 www.co-psychiatry.com

Volume 38 • Number 3 • May 2025

Copyright $\ensuremath{\textcircled{O}}$ 2025 Wolters Kluwer Health, Inc. All rights reserved.

Table 1 (Continued)																			
										Prevalence	of Internet ad	diction (%)								
No. Ref	Study site	Income level	Survey time	COVID- 19 pan- demic	Study design	Sam- pling method	Age [mean (SD) / range]	Instru- ment/ cut-off	mean score of mea- sures	Total (IA/ sample size)	Male (IA/sample size)	Female (IA/ sample size)	Male (%)	Urben resi- dence (%)	Smoking (%)	Drinking (%)	Depres- sion (%)	Sleeping problem /	Anxiety (%)	Quality assess- ment score
89 Tahir <i>et al.</i> , 2021 [14	Dominican Dominican Republic; Egypt; Guyand; India; Mexico; Pakistan; Sudan	UM; LM; H; LM; UM; LM; L	JuneJuly 2020	During	S	U	15-44	IAT-20 > 30	39.7	67.6 (1859/2749)	Ž	Ž	36.0	84.1	6. 6	Х	ž	73.5	ž	4
90 Tayhan Kar <i>et al.</i> , 202 [148]	tal Turkey 21	MU	March-June 2019	Before	CS	2	20.7 (1.6)	IAT-20≥50	30.3	13.0 (<i>5</i> 7/437)	22.4 (26/116)	9.7 (31/321)	26.5	ZR	ZR	ZR	ZR	ZR	Z	5
91 Tenzin <i>et al</i> 2018 [14	., Bhutan 9]	ΓW	May-January 2017	Before	C.S	M; CS	21.7 (1.7)	IAT-20≥50	42.5	34.3 (282/823)	Ж	Х	51.9	R	R	R	Ж	R	Ж	Ŷ
92 Torabi et al. 2020 [15	., Iran 0]	MU	R	Хĸ	C.S	~	R	IAT-20≥50	44.0	35.0 (140/400)	Х	NR	38.8	R	R	R	Хĸ	R	R	4
93 Umeta <i>et al</i> 2022 [15	., Ethiopia 1]	-	July- August 2021	During	C.S	R	R	IAT-20 > 30	Ж	79.4 (201/253)	R	Х	68.8	49.0	5.9	17.4	ž	R	ž	9
94 Wang et al 2017 [15	., China 2]	MU	NR	R	C.S	s; cs	20.8 (1.5)	IAT-20≥50	Ж	12.8 (138/1080)	R	Ä	32.9	Х	NR	NR	ž	NR	Хĸ	
95 Wang et al 2020 [15	, China 3]	WN	September- November 2018	Before	C.S	S	18.8 (1.2)	IAT-20 > 40	R	28.2 (1054/3738)	26.0 (404/1552)	29.7 (650/2186)	41.5	Х <mark>ж</mark>	Х	ZR	Ж	30.1	Х <mark>ж</mark>	Ŷ
96 Yadav et al. 2022 [15:	., India 4]	M	R	R	CS	S	22.6 (3.5)	IAT-20≥50	Ж	84.5 (492/582)	91.4 (244/267)	78.7 (248/315)	45.9	ZR	R	R	R	RR	R	5
97 Yang et al., 2019 [15.	5] China	MU	2018	Before	C.S	R	18.2 (0.7)	IAT-20 ≥ 50	Ж	17.4 (733/4211)	16.2 (231/1428)	18.0 (502/2783)	33.9	NR	3.3	45.4	1.5	12.8	R	5
98 Ye et al., 2016 [15	China 6]	MU	May-June 2012	Before	C.S	S	19.7 (1.2)	IAT-20 ≥ 50	Ж	22.3 (540/2422)	26.7 (383/1433)	15.9 (157/989)	59.2	NR	9.3	11.6	33.9	42.6	19.7	Q
99 Younes et a 2016 [15	Il, Lebanon ブ]	¥	September- December 2015	Before	CS	2	20.4 (1.8)	IAT-20≥50	30	16.8 (101/600)	23.6 (43/182)	13.9 (58/418)	30.3	Х	11.4	27.4	27.7	65.1	55.3	5
100 Zenebe et c 2021 [15	<i>al.</i> , Ethiopia 8]	-	2018-2019	Before	C.S	M; CS	21.4 (1.8)	IAT-20 > 30	R	85.0 (466/548)	Х	NR	53.1	ZR	11.3	25.4	Ж	R	ХR	7
101 Zhao et al., 2021 [15	, China 9]	MU	June-July 202C) During	C-S	υ	20.0 (1.3)	IAT-20≥50	R	28.4 (3191/11254)	30.9 (1251/4054)	26.9 (1940/7200)	36.0	R	NR	R	41.5	35.0	32.6	Ŷ
Abbreviations: sampling; H, F samplina: SB.	Before, Befor 1igh income; Snowball sam	re the COVI L, Low incor pling; SR, S	ID-19 pande me; LM, Low Systematic Re	emic; C, C , middle ir andom sa	Convenien ncome; N mpling; L	nt sampling A, Multista U, Upper r	y; CS, C ge samp middle ii	luster sampl bling; NR, n ncome.	ing; C-S of repor	s, cross-sectiono ted; PPS, Probo	al; CSS, Con ability Propor	secutive Samp tional to Size	ling; Dur sampling	ing, Duri ; PS, Purj	ng the CC posive sar	VVID-19 _P npling; R,	oandemic , Random	;; E, enum sampling	ierative g; S, Stra	Itified

Copyright $\ensuremath{\textcircled{C}}$ 2025 Wolters Kluwer Health, Inc. All rights reserved.

Study	Events	Total		Proportion	95%-CI
Cao et al. 2011	350	5061		0.07	[0.06; 0.08]
Güneş et al. 2023	49	581		0.08	[0.06; 0.11]
Cincik et al. 2023	138	1419		0.09	[0.08; 0.09]
Biolcati et al. 2017	44	436	H	0.10	[0.07; 0.13]
Ghamari et al. 2011 Seo et al. 2021	50 47	462	E	0.11	[0.08; 0.14]
Aznar-Díaz et al. 2020	89	758		0.12	[0.10; 0.14]
Romero-Rodríguez et al. 2022	126	1013	8	0.12	[0.10; 0.15]
Bisen et al. 2020	200	1600		0.12	[0.11; 0.14]
Wang et al. 2017	138	1080		0.13	[0.11; 0.15]
Condori- Meza et al. 2021	5/ 124	437 844		0.13	[0.10; 0.17]
Banal et al. 2023	77	500	E	0.15	[0.12; 0.19]
Mamun, et al. 2020 Khan, et al. 2017	100	605 322	÷.	0.17	[0.14; 0.20]
Esen et al. 2021	211	1257		0.17	[0.15; 0.19]
Younes et al. 2016	101	600		0.17	[0.14; 0.20]
Ercan et al. 2021	172	980		0.18	[0.15; 0.20]
Angane et al. 2020	36	200	<u>폭</u>	0.18	[0.13; 0.24]
Mengistu, et al. 2013	162	847	10.41 10.01	0.19	[0.17; 0.22]
Corrêa Rangel et al. 2022	84	420	폭	0.20	[0.16; 0.24]
Ramon-Arbues et al. 2021 Feizy et al. 2020	148	698 300		0.21	[0.18; 0.24]
Lu, et al. 2020	1233	5757		0.21	[0.20; 0.23]
Gedam et al. 2016	129	597	B	0.22	[0.18; 0.25]
Cai et al. 2010	249	1070		0.22	[0.21; 0.24]
Orsolini et al. 2022	266	1141		0.23	[0.21; 0.26]
Gupta et al. 2018	96	380		0.25	[0.21; 0.30]
Lan, et al. 2020	109	431		0.25	[0.21; 0.30]
Samaha et al. 2019 Nacarajanna, et al. 2022	156	596	-	0.26	[0.23; 0.30]
Wang et al. 2020	1054	3738		0.28	[0.27; 0.30]
Zhao et al. 2021	3191	11254		0.28	[0.28; 0.29]
Monammadbeigi, et al. 2016 Mboya, et al. 2020	155	254 500	**	0.29	[0.23; 0.35]
Kashfi, et al. 2023	53	168	-12-	0.32	[0.25; 0.39]
Tenzin et al. 2018 Torabi et al. 2020	282	823 400		0.34	[0.31; 0.38]
Asrese et al. 2020	286	812		0.35	[0.32; 0.39]
Muche, et al. 2021 Rhandari et al. 2017	286	812	=	0.35	[0.32; 0.39]
Simcharoen et al. 2018	119	324		0.35	[0.31; 0.42]
Chen et al. 2017	202	547	1	0.37	[0.33; 0.41]
Al – Gamal et al. 2020 Al – Gamal et al. 2014	235	279 587		0.39	[0.33; 0.45]
Dhamnetiya et al. 2021	83	201	- <u>æ</u> -	0.41	[0.34; 0.48]
Hussain, et al. 2018 Demenech et al. 2023	50 428	120		0.42	[0.33; 0.51]
Mahmoud, et al. 2022	234	525		0.45	[0.40; 0.49]
Shi et al. 2019	565	1264	200	0.45	[0.42; 0.47]
Jagan, et al. 2023	93	196	-	0.45	[0.40; 0.55]
Salama et al. 2020	289	608	11 II I	0.48	[0.44; 0.52]
Khanbabaei, et al. 2022	125	262	<u> </u>	0.48	[0.44; 0.52]
Brito et al. 2023	744	1553		0.48	[0.45; 0.50]
Rajasekhar et al. 2023	248	2035		0.50	[0.46; 0.55]
Abdel-Salam et al. 2019	190	370		0.51	[0.46; 0.57]
Latifeh, et al. 2022 Parmar et al. 2022	1014	1953	1 <u>2</u>	0.52	[0.50; 0.54]
Amano et al. 2023	399	745		0.54	[0.50; 0.57]
Sahraian et al. 2016 Choch et al. 2019	152	278	<u>=</u>	0.55	[0.49; 0.61]
Cai et al. 2018	1177	2108		0.56	[0.54; 0.58]
Ademoyegun et al. 2024	294	510	표	0.58	[0.53; 0.62]
Siddik et al. 2014	4830	7667		0.63	[0.62; 0.64]
Mellouli, et al. 2018	182	288		0.63	[0.57; 0.69]
Singn et al. 2017 Rosliza et al. 2018	207	322		0.64	[0.57; 0.71]
Ibrahim, et al. 2022	212	321	ᆂ	0.66	[0.61; 0.71]
Tahir et al. 2021 Ksiksou, et al. 2023	1859 265	2749		0.68	[0.66; 0.69]
Khazaie, et al. 2023	289	420		0.69	[0.64; 0.73]
Kumari, M. P. 2022	155	220	<u>=</u>	0.70	[0.64; 0.76]
Selvamani, I. 2019	198	280		0.70	[0.65; 0.76]
Adhikari et al. 2022	260	356	놀	0.73	[0.68; 0.78]
Miskulin. et al. 2022	560 444	755 597	=	0.74	[0.71; 0.77]
Mohamed, et al. 2024	232	307	*	0.76	[0.70; 0.80]
Umeta et al. 2022 Ranjan et al. 2021	201	253 854		0.79	[0.74; 0.84] [0.77: 0.82]
Haque, et al. 2016	113	139	-	0.81	[0.74; 0.87]
Jaafar, et al. 2022	216	265		0.82	[0.76; 0.86]
Yadav et al. 2021	492	582	-	0.85	[0.81; 0.87]
Pramanik et al. 2012	110	130		0.85	[0.77; 0.90]
Zenebe et al. 2021 Shehata et al. 2021	466 654	548		0.85	[0.82; 0.88]
Hammad, et al. 2024	301	338		0.89	[0.85; 0.92]
Ehsan, A. 2021 Jaiswal et al. 2020	343 288	380 307		0.90	[0.87; 0.93] [0.91: 0.96]
Sayyah et al. 2019	297	302		0.98	[0.96; 0.99]
Random effects model		128020		0.42	[0 36: 0 48]
Heterogeneity: / ² = 100%, τ ² = 1.6347, p) = 0	.20020		0.42	[0.00, 0.40]
			0 0.2 0.4 0.6 0.8 1		

FIGURE 2. Meta-analysis of prevalence of internet addiction in university students.

of the prevalence of internet addiction (Egger's test t=2.73; P=0.008, Figure S1A, http://links.lww.com/ YCO/A90) and odd ratio of internet addiction between male and female (Egger's test t=3.30, P=0.002, Figure S1B, http://links.lww.com/YCO/ A90). In the sensitivity analysis, the pooled prevalence of internet addiction remained robust, indicating that no individual study significantly influenced the overall results (Figure S2, http://links.lww.com/ YCO/A90). Similar results were found in the sensitivity analysis in the meta-analysis of OR of internet addiction between male and female students (Figure S3, http://links.lww.com/YCO/A90).

DISCUSSION

To the best of our knowledge, this was the first metaanalysis that specifically used the IAT-20 to assess the global prevalence of internet addiction among university students. Based on the 101 eligible studies with 128020 participants from 38 countries and territories, the pooled global prevalence of internet addiction in university students was 41.84% (95% CI: 35.89-48.02). Subgroup analysis and metaregression analyses revealed that income level, region, stage of the COVID-19 pandemic, IAT-20 cut-off values, sample size, and the prevalence of depression were moderators influencing the prevalence of internet addiction. Furthermore, the comparison of internet addiction prevalence between sexes revealed that male university students had a significantly higher risk of internet addiction compared to their female counterparts.

The pooled global prevalence of internet addiction in university students in this meta-analysis (41.84%, 95% CI: 35.89-48.02) is considerably higher than the corresponding figure in all-age populations (14.22%, 95% CI: 12.90-15.65) [20] and healthcare professionals (9.7%, 95% CI:5.8–13.6) [30] reported in previous meta-analyses. Previous studies also found that internet addiction was common among university students [15^{••},18,19]. For instance, the pooled prevalence of internet addiction in Ethiopian university students (43.42%, 95%) CI: 28.54–58.31) [18] was similar, while the pooled prevalence in Iranian university students (31.51%, 95% CI: 26.47–36.55) [19] and Asian university students (24.3%, 95% CI: 19.8-29.5) [15**] were relatively lower. The higher prevalence rates of internet addiction among university students might be attributed to factors related to the developmental stages of adolescence and early adulthood. Given that they are the most active internet users of all age groups, they are more likely to develop internet addiction [14,31]. As this stage of development is crucial for exploring new identities and establishing independence [32], the internet could offer timely opportunities and vast spaces for university students to explore, experiment and engage with their identities [33,34], thus leading to high internet use. Furthermore, growing independence among university students coupled with need for self-regulation and less supervision from parents or teachers, might result in fewer restrictions on internet use [35,36]. Moreover, university students are more likely to use the internet as a coping mechanism when faced

Subgroups	Categories	No. of studies	Events	Sample size	Proportion (95%Cl)	l ² (%)	<i>P</i> -value within subgroups	P-value across subgroups
Income Level	High income	12	2200	7008	32.6 (18.5, 50.6)	99.2%	< 0.001	0.007
	Upper middle income	37	16247	82552	31.0 (23.0, 40.3)	99.6%	< 0.001	
	Low middle income	44	14832	29520	50.3 (41.6, 58.9)	99.1%	< 0.001	
	Low income	8	3032	6191	55.5 (37.9, 71.8)	99.1%	< 0.001	
Region	East Asia & Pacific	18	12904	70982	30.6 (20.6, 42.7)	99.7%	< 0.001	<0.001
	Europe & Central Asia	13	2127	9719	21.2 (13.3, 32.1)	99.1%	< 0.001	
	Latin America & Caribbean	5	1424	4230	24.6 (14.1, 39.4)	99.0%	<0.001	
	Middle East & North Africa	26	6283	13014	49.8 (37.9, 61.6)	98.7%	<0.001	
	South Asia	29	10999	21949	49.1 (37.8, 60.5)	99.2%	< 0.001	
	Sub-Saharan Africa	10	2574	5377	56.8 (40.5, 71.9)	98.9%	< 0.001	
COVID-19 pandemic	Before	55	17482	80703	37.6 (30.2, 45.7)	99.5%	<0.001	0.021
	During	23	16456	35417	54.1 (42.6, 65.2)	99.5%	< 0.001	
Sampling method	Probability sampling	73	22032	89231	44.5 (37.0, 52.3)	99.5%	<0.001	0.145
	Nonprobability sampling	27	16074	38489	35.8 (27.6, 44.9)	99.5%	< 0.001	
Sex	Male	56	9389	25258	35.1 (30.0, 41.1)	99.3%	< 0.001	0.146
	Female	57	12824	37650	29.5 (24.8, 35.1)	99.5%	< 0.001	
Cut-off value	≥20	9	2134	2736	81.3 (67.9, 90.0)	96.3%	< 0.001	<0.001
	> 30	19	7706	12655	67.3 (58.7, 74.9)	98.2%	< 0.001	
	≥40	9	3425	6710	52.7 (42.2, 62.8)	97.1%	< 0.001	
	≥50	52	16896	87176	27.4 (22.4, 33.2)	99.4%	< 0.001	
	>50	3	429	2724	16.9 (7.9, 32.3)	99.0%	<0.001	

Table 2. Subgroup analyses of prevalence of internet addiction

Before, Before the COVID-19 pandemic; During, During the COVID-19 pandemic. Bold font: $p\,{<}\,0.05.$

Idble 3. Meta-regressio	on analyses of prev	dience of infern	er addiction			
Variables	No. of studies	Coefficient	Standard error	95% CI of coefficient	z-value	p-value
Sample size	101	-0.0001	3.74E-05	-0.0002; -1.2E-05	-2.2781	0.023
Age (year)	65	-0.0040	0.0527	-0.1074; 0.0993	-0.0768	0.939
Male, %	89	0.0151	0.0095	-0.0036; 0.0338	1.5849	0.113
Urban, %	17	0.0003	0.0048	-0.0090; 0.0096	0.0614	0.951
Smoke, %	21	-0.0004	0.0041	-0.0085; 0.0077	-0.0985	0.922
Drink, %	15	-0.0008	0.0031	-0.0069; 0.0052	-0.2704	0.787
Depression, %	19	0.0283	0.0065	0.0155; 0.0411	4.3354	<0.001
Sleeping problem, %	16	0.0028	0.0029	-0.0028; 0.0084	0.9714	0.331
Anxiety, %	13	0.0106	0.0123	-0.0134; 0.0346	0.8632	0.388
Study quality assessment	101	-0.2137	0.1162	-0.4415; 0.0142	-1.8380	0.066

Table 3. Meta-regression analyses of prevalence of internet addiction

Bold font: p < 0.05.

0951-7367 Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.

	N	lale	Fei	male				
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
Pramanik et al. 2012	53	65	57	65	m ÷-	0.62	[0.24: 1.63]	0.8%
Khan, et al. 2017	25	175	29	147		0.68	[0.38; 1.22]	1.4%
Cai et al. 2023	486	957	691	1151	+	0.69	[0.58; 0.82]	2.4%
Singh et al. 2017	79	128	44	64		0.73	[0.39; 1.39]	1.3%
Orsolini et al. 2022	77	374	189	767		0.79	[0.59; 1.07]	2.1%
Brito et al. 2023	252	569	491	983		0.80	[0.65; 0.98]	2.4%
Asrese et al. 2020	180	535	106	277		0.82	[0.61; 1.11]	2.1%
Wang et al. 2020	404	1552	650	2186		0.83	[0.72; 0.96]	2.5%
Jagan, et al. 2023	40	88	53	108		0.86	[0.49; 1.52]	1.5%
Yang et al. 2019	231	1428	502	2783	+	0.88	[0.74; 1.04]	2.4%
Siddik et al. 2024	1738	2816	3090	4851	+	0.92	[0.83; 1.01]	2.5%
Al - Gamal et al. 2014	98	251	137	336		0.93	[0.67; 1.30]	2.0%
Seo et al. 2021	29	255	18	153	- <u>+</u> -	0.96	[0.51; 1.80]	1.3%
Paudel et al. 2021	89	177	159	317		1.01	[0.70; 1.45]	2.0%
Shehata et al. 2021	215	245	439	501	玉	1.01	[0.64; 1.61]	1.7%
Demenech et al. 2023	180	411	249	614	1.	1.14	[0.89; 1.47]	2.3%
Dhamnetiya et al. 2021	56	132	27	69	- <u>=</u> -	1.15	[0.63; 2.08]	1.4%
Adhikari et al. 2022	155	209	105	147	- <u>-</u> -	1.15	[0.72; 1.84]	1.7%
Gupta et al, 2018	62	236	34	144	<u> </u>	1.15	[0.71; 1.87]	1.7%
Romero-Rodriguez et al. 2022	35	252	91	761	一世	1.19	[0.78; 1.81]	1.8%
Lan, et al. 2020	30	108	79	323	重	1.19	[0.73; 1.94]	1.6%
Caretal. 2021	68	265	181	805	直	1.19	[0.86; 1.64]	2.1%
Zhao et al. 2021	1251	4054	1940	7200	, <u>*</u>	1.21	[1.11; 1.32]	2.6%
Banal et al. 2023	41	245	30	200	Ē	1.22	[0.75; 1.99]	1.7%
Bisen et al. 2020	109	800	91	800	Ē	1.23		2.1%
Arner Diez et al. 2020	20	272	03 52	919	臣	1.24	[0.07; 1.70]	2.0%
Corrêo Bangol et al. 2020	30	212	27	400	<u>ē</u>	1.20	[0.79, 1.90]	1.770
Pamón Arbués et al. 2022	67	210	81	204	E.	1.20	[0.70, 2.03]	2 0%
Mamun et al 2020	57	312	13	203		1.30	[0.90, 1.07]	1.8%
Nagarajanna et al 2023	74	236	150	578		1.30	[0.04, 2.00]	2 1%
Rajasekhar et al. 2023	715	1341	323	694		1.30	[1.09 1.58]	2.1%
Karimy et al 2020	16	35	93	244		1.37	[1.00, 1.00]	1.2%
Condori- Meza et al. 2021	53	301	71	543	<u> </u>	1.42	[0.96: 2.09]	1.9%
Mbova, et al. 2020	100	292	55	208	<u> </u>	1.45	[0.98: 2.14]	1.9%
Ehsan, A. 2021	131	142	212	238		1.46	[0.70: 3.05]	1.1%
Chen et al. 2017	102	240	100	307	<u>i</u>	1.53	[1.08; 2.17]	2.0%
Hussain, et al. 2018	25	52	25	68		1.59	[0.76; 3.32]	1.1%
Salama et al. 2020	168	312	121	296		1.69	[1.22; 2.33]	2.1%
Kandri, et al. 2014	119	177	184	338		1.72	[1.17; 2.51]	1.9%
Ali et al. 2017	119	209	161	378	 	1.78	[1.27; 2.51]	2.0%
Mengistu, et al. 2021	105	455	43	306	 	1.83	[1.24; 2.71]	1.9%
Mohammadbeigi, et al. 2016	16	39	57	214		1.92	[0.95; 3.88]	1.2%
Younes et al. 2016	43	182	58	418		1.92	[1.24; 2.98]	1.8%
Gedam et al. 2016	45	147	84	450		1.92	[1.26; 2.94]	1.8%
Ye et al. 2016	383	1433	157	989	+	1.93	[1.57; 2.38]	2.4%
Ansari et al. 2016	49	145	47	235		2.04	[1.28; 3.27]	1.7%
Ghosh et al. 2018	55	86	31	69	÷	2.17	[1.14; 4.15]	1.3%
Rosliza et al. 2018	86	114	121	208		2.21	[1.33; 3.67]	1.6%
Esen et al. 2021	93	364	118	893	<u> </u>	2.25	[1.66; 3.06]	2.1%
Tayhan Kartal et al. 2021	26	116	31	321		2.70	[1.52; 4.79]	1.4%
Yadav et al. 2022	244	267	248	315	- <u>-</u>	2.87	[1.73; 4.75]	1.6%
Gnamari et al. 2011	29	162	21	300		2.90	[1.59; 5.27]	1.4%
Manmoud, et al. 2022	164	292	/0	233		2.98	[2.07; 4.29]	2.0%
Kumari, M. P. 2022	106	133	49	87		3.04	[1.67; 5.54]	1.4%
Sayyan et al. 2019	18	18	219	224		- 3.93	[0.22; 71.96]	0.1%
Random effects model		25258		37280	6	1.32	[1.19; 1.46]	100.0%
Heterogeneity: $I^2 = 81\%$, $\tau^2 = 0.1$	069, p < 0	0.01						
					0.1 0.51 2 10			

FIGURE 3. Odds ratio of internet addiction between male and female university students.

with increasing academic and psychosocial stressors [37,38]. In addition, with the shift towards online courses and assignments, such academic expectations would encourage greater internet use among university students [3,39]. The blurring of boundaries between academic and recreational internet use

might foster unhealthy internet usage, making disengagement difficult when needed.

Subgroup analyses found a higher pooled prevalence of internet addiction among university students in low and lower-middle income countries, and also certain geographic regions including Sub-Saharan Africa, the Middle East & North Africa, and South Asia, where they were predominantly represented by studies from Ethiopia, Iran, Egypt, and India. Similar results were also found in a global meta-analysis of internet addiction in the general population [20]. Such differences in internet addiction prevalence might suggest socioeconomic and geographic factors in the disparity in internet addiction among university students [40]. First, lower life satisfaction and poorer environmental conditions strongly associated with economic disadvantages might lead young people to use the internet as a means for coping with life challenges to escape from reality [41]. As economic disadvantages also limit access to other offline recreational activities as well as mental health resources, university students could revert to spending excessive time online [42]. Furthermore, there might be cultural differences in lower income countries and regions in terms of recognizing internet addiction as a problem needing intervention, thus exacerbating the development of internet addiction among young people [43].

Consistent with previous findings [44,45], we found that studies conducted during the COVID-19 pandemic had reported increased internet addiction prevalence, which is in line with global reports of the impact of the pandemic on excessive internet use, partly attributed to social distancing and posttraumatic stress [44]. During the pandemic, mass lockdowns and school closures isolated university students from their peers and limited their social interactions to online communication, which likely increased the time spent using their electronic devices on the internet, which might have contributed to the development of internet addiction [46,47[•]]. Moreover, as the effects of social withdrawal could be extended suggesting that internet addiction might not subside immediately following the end of lockdowns due to the pandemic [48]. Additionally, the psychological issues resulting from the COVID-19 pandemic, including stress, depression, and anxiety, might further contribute to an increase in prevalence of internet addiction [38].

The IAT cut-off values were significantly associated with the reported prevalence of internet addiction, with higher cut-off values generally resulting in lower internet addiction prevalence [16,20]. Higher IAT cutoff values indicate more stringent assessment criteria for internet addiction, which might generate lower prevalence figures compared to studies using less stringent criteria. As reported in other meta-analyses [16,49], we found that studies with a larger sample size had a lower prevalence of internet addiction. This negative association between sample size and prevalence could be explained by the greater statistical power with larger sample size having more robust estimates that were less prone to random variation, therefore resulting in lower prevalence figures [50,51].

Meta-regression analyses revealed that the prevalence of depression was significantly associated with internet addiction prevalence in university students. Previous research found a bidirectional relationship between depression and internet addiction [12[•]]. Individuals with depression might use the internet as a means of coping with negative emotions, which could increase the risk of internet addiction. In contrast, internet addiction might exacerbate depression by reducing real-life social interactions and hindering the development of social skills [12[•]]. We also found that male students had a higher risk of internet addiction, which supports previous findings on sex differences in internet addiction [52]. This could be attributed to a greater neuropsychological reward response and peer pressure to online gaming in men, resulting a higher risk of internet addiction due to stronger tendency to have addictive online behavior [53,54]. Additionally, gender norms that discourage emotional expression in males might drive male university students to use the internet as a coping mechanism to escape external stressors and difficulties, potentially leading to excessive internet use [55].

There are several strengths of this study, including the large number of included studies, inclusion of study cohorts from multiple regions, and use of sophisticated analysis methods (e.g., subgroup and meta-regression analyses) to identify moderators of internet addiction prevalence. However, several limitations should be acknowledged. First, similar to previous epidemiological meta-analyses [56–58], there was high heterogeneity, although subgroup analyses were performed. Second, publication bias was significant since studies with higher prevalence rates were more likely to be published. Third, studies published in non-English languages and those using different assessment tools were not included, which might cause selection bias.

In conclusion, our study found that the prevalence of internet addiction was high among university students globally, which has increased since the COVID-19 pandemic. To address internet addiction, screening and intervention measures should be prioritized for high-risk population, particularly male students, those from lower-income regions and those with depression.

Acknowledgements

The authors are grateful to all participants and clinicians involved in this study.

Authors statement: Study design: Yuan Feng, Yu-Tao Xiang. Data collection, analysis and interpretation: Xin Liu, Zhen Gui, Zi-Mu Chen, Yuan Feng, Xiao-dan Wu, Zhaohui Su, Teris Cheung, Gabor S. Ungvari, Xuan-Chen Liu, Yi-Ran Yan. Drafting of the manuscript: Xin Liu, Yu-Tao Xiang.

Critical revision of the manuscript: Chee H. Ng. Approval of the final version for publication: all co-authors.

Financial support and sponsorship

The study was supported by Beijing High Level Public Health Technology Talent Construction Project (Discipline Backbone-01–028), the Beijing Municipal Science & Technology Commission (No. Z181100001518005), the Capital's Funds for Health Improvement and Research (CFH 2024-2-1174), and the University of Macau (MYRG2022-00187-FHS; MYRG-GRG2023-00141-FHS).

Conflicts of interest

The authors have no conflicts of interest to declare.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest
 - Khan MW, Saad S, Ammad S, et al. Smart infrastructure and AI, AI in material science. Boca Raton: CRC Press; 2024; 193–215.
 - Yang W. Artificial intelligence education for young children: why, what, and how in curriculum design and implementation. Comput Educ Artif Intell 2022; 3:100061.
 - 3. McNutt M. Higher education for all. Science 2022; 378:579.
 - Mahor V, Rawat R, Kumar A, et al. IoT and artificial intelligence techniques for public safety and security, Smart urban computing applications. River Publishers 2023; 111–126.
 - Huang Y, Huang H. Exploring the effect of attachment on technology addiction to generative AI chatbots: a structural equation modeling analysis. Int J Hum Comput Interact 2024; 1–10.
 - Young K. Caught in the net: how to recognize the signs of internet addiction and a winning strategy for recovery. John Wiley& Sons; 1998.
 - Young KS. Psychology of computer use: XL. Addictive use of the Internet: a case that breaks the stereotype. Psychol Rep 1996; 79:899–902.
 - Griffiths M. Gambling on the internet: a brief note. J Gambling Studies 1996; 12:471–473.
 - Beard KW. Internet addiction: a review of current assessment techniques and potential assessment questions. CyberPsychol Behav 2005; 8:7–14.
- **10.** Cai ZH, Mao PP, Wang ZK, *et al.* Associations between problematic Internet use and mental health outcomes of students: a meta-analytic review. Adolesc

Res Rev 2023; 8:45–62. This study comprehensively reviewed the mental health outcomes of problematic internet use among students by meta-analysis based on 223 studies with a cumulative total of 498 167 participants and 512 effect sizes. Negative mental health outcomes, including depressive symptoms, anxiety, and loneliness, were moderately and positively associated with problematic internet use, while subjective well being was negatively related. The finding provides solid evidence for the link between problematic internet use and different mental health outcomes that highlight the issue of IA among students.

 Alimoradi Z, Lin C-Y, Broström A, et al. Internet addiction and sleep problems: a systematic review and meta-analysis. Sleep Med Rev 2019; 47:51–61.

12. Gu J, Zhan P, Huang Z, *et al.* Anxiety/depression and internet addiction: directions, antecedents, and outcomes. Curr Addict Rep 2024; 11:588–597. This study reviews the relationship between anxiety/depression and internet addiction. It revealed that there are some risk factors between anxiety/depression and internet addiction and relationships between them were undirectional and bidirectional. It suggests that interventions targeting negative emotions, like cognitive behavioral therapy, may be beneficial in addressing both internet addiction and anxiety/depression.

- Hassan T, Alam MM, Wahab A, et al. Prevalence and associated factors of internet addiction among young adults in Bangladesh. J Egypt Public Health Assoc 2020; 95:3.
- Lozano-Blasco R, Robres AQ, Sánchez AS. Internet addiction in young adults: a meta-analysis and systematic review. Comput Human Behav 2022; 130:107201.
- **15.** Duc TQ, Chi VTQ, Huyen NTH, *et al.* Growing propensity of internet addiction among Asian college students: meta-analysis of pooled preva-
- lence from 39 studies with over 50,000 participants. Public Health 2024; 227:250–258.

This study comprehensively reviewed the prevalence of internet addiction among Asian college students based on 39 studies with over 50,000 participants. The pooled prevalence of internet addiction among Asian college students was 24.3% (95% CI: 19.8–29.5) and the prevalence increased with time. The finding indicaiting a relavtiely high prevalence and increasing trend of internet addiction among university students implicating an emerging concern on internet addiction in university student.

- Li L, Xu DD, Chai JX, et al. Prevalence of Internet addiction disorder in Chinese university students: a comprehensive meta-analysis of observational studies. J Behav Addict 2018; 7:610–623.
- Joseph J, Varghese A, Vr V, et al. Prevalence of internet addiction among college students in the Indian setting: a systematic review and meta-analysis. Gen Psychiatr 2021; 34:e100496.
- Atalay YA. Prevalence of internet addiction and associated factors among university students in Ethiopia: systematic review and meta-analysis. Front Digit Health 2024; 6:1373735.
- Salarvand S, A. NA, Dalvand S, et al. Prevalence of internet addiction among Iranian university students: a systematic review and meta-analysis. Cyberpsychol Behav Soc Netw 2022; 25:213–222.
- Meng S-O, Cheng J-L, Li Y-Y, et al. Global prevalence of digital addiction in general population: a systematic review and meta-analysis. Clin Psychol Rev 2022; 92:102128.
- Young KS. Clinical assessment of Internet-addicted clients. Internet Addict 2007; 19–34.
- Widyanto L, McMurran M. The psychometric properties of the Internet Addiction Test. CyberPsychol Behav 2004; 7:443–450.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372:n71.
- 24. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283:2008–2012.
- Boyle MH. Guidelines for evaluating prevalence studies. Evidence Based Mental Health 1998; 1:37.
- Loney PL, Chambers LW, Bennett KJ, et al. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic Dis Can 1998; 19:170–176.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in metaanalyses. BMJ 2003; 327:557–560.
- The World Bank Group. Countries and economies. https://data.worldbank. org/country. [Accessed 23 September 2024]
- World Health Organization. Coronavirus disease (COVID-19) pandemic. https://www.who.int/europe/emergencies/situations/covid-19. [Accessed 4 December 2024]
- Buneviciene I, Bunevicius A. Prevalence of internet addiction in healthcare professionals: systematic review and meta-analysis. Int J Social Psychiatry 2020; 67:483–491.
- Tsitsika AE, Janikian ME, Greydanus DE, et al. Internet addiction: a public health concern in adolescence Edited by Nova Science Publishers 2013.
- 32. Arnett JJ, Žukauskien≐ R, Sugimura K. The new life stage of emerging adulthood at ages 18–29 years: implications for mental health. Lancet Psychiatry 2014; 1:569–576.
- Hoffner CA, Bond BJ. Parasocial relationships, social media, & well being. Curr Opin Psychol 2022; 45:101306.
- Wängqvist M, Frisén A. Who am I online? Understanding the meaning of online contexts for identity development. Adolesc Res Rev 2016; 1:139–151.
- Lukavská K, Vacek J, Gabrhelik R. The effects of parental control and warmth on problematic internet use in adolescents: a prospective cohort study. J Behav Addict 2020; 9:664–675.
- 36. Fan Z, Chen M, Lin Y. Self-control and problematic Internet use in college students: the Chain Mediating Effect of Rejection Sensitivity and Loneliness. Psychol Res Behav Manag 2022; 15:459–470.
- 37. Singh S, Mani Pandey N, Datta M, et al. Stress, internet use, substance use and coping among adolescents, young-adults and middle-age adults amid the 'new normal' pandemic era. Clin Epidemiol Glob Health 2021; 12:100885.
- 38. Scafuto F, Ciacchini R, Orrù G, et al. COVID-19 pandemic and Internet addiction in young adults: a pilot study on positive and negative psychosocial correlates. Clin Neuropsychiatry 2023; 20:240–251.
- Jones S, Johnson-Yale C, Millermaier S, et al. Academic work, the Internet and U.S. college students. Internet Higher Educ 2008; 11:165–177.
- Lee C-S, McKenzie K. Socioeconomic and geographic inequalities of Internet addiction in Korean adolescents. Psychiatry Investig 2015; 12:559–562.

196 www.co-psychiatry.com

- Cheng C, Li AY. Internet addiction prevalence and quality of (real) life: a metaanalysis of 31 nations across seven world regions. Cyberpsychol Behav Soc Netw 2014; 17:755–760.
- Lee KH. Mental health and recreation opportunities. Int J Environ Res Public Health 2020; 17:.
- Ko D, Yao M. 11 Internet addiction: an cross-cultural perspective 2015; 141–158.
- 44. Li YY, Sun Y, Meng SQ, et al. Internet addiction increases in the general population during COVID-19: evidence from China. Am J Addict 2021; 30:389–397.
- Masaeli N, Farhadi H. Prevalence of Internet-based addictive behaviors during COVID-19 pandemic: a systematic review. J Addict Dis 2021; 39:1–27.
- 46. Cai H, Bai W, Sha S, et al. Identification of central symptoms in Internet addictions and depression among adolescents in Macau: a network analysis. J Affect Disord 2022; 302:415–423.
- 47. Şan İ, Orhan Karsak HG, İzci E, *et al.* Internet addiction of university students
 in the Covid-19 process. Heliyon 2024; 10:e29135.

This study investigated the intricate dynamics of internet addiction among university students using a comprehensive quantitative approach to identify the factors that influence Internet addiction. Daily Internet Usage Time (DIUT) and Communicative Internet Use Frequency (CIUF) were found associated with internet addiction. This study highlights the need to understand the complex nature of internet addiction and its potential impact on students' academic and psychological well being. It provides valuable insights for developing informed educational strategies and interventions to promote responsible internet use and support students in navigating the digital age.

- 48. Kato TA, Shinfuku N, Tateno M. Internet society, internet addiction, and pathological social withdrawal: the chicken and egg dilemma for internet addiction and hikikomori. Curr Opin Psychiatry 2020; 33:264–270.
- 49. Bai W, Gui Z, Chen M-Y, et al. Global prevalence of poor sleep quality in military personnel and veterans: a systematic review and meta-analysis of epidemiological studies. Sleep Med Rev 2023; 71:101840.
- Jones SR, Carley S, Harrison M. An introduction to power and sample size estimation. Emerg Med J 2003; 20:453–458.
- Corty EW, Corty RW. Setting sample size to ensure narrow confidence intervals for precise estimation of population values. Nurs Res 2011; 60:148–153.
- 52. Su W, Han X, Jin C, et al. Are males more likely to be addicted to the internet than females? A meta-analysis involving 34 global jurisdictions. Comput Human Behav 2019; 99:86–100.
- 53. Su W, Han X, Yu H, et al. Do men become addicted to internet gaming and women to social media? A meta-analysis examining gender-related differences in specific internet addiction. Comput Human Behav 2020; 113:106480.
- Waechter N, Meschik M. Peer socialization of male adolescents in digital games: achievement, competition, and harassment. Communications 2023; 48:457–481.
- 55. Li Q, Dai W, Zhong Y, et al. The mediating role of coping styles on impulsivity, behavioral inhibition/approach system, and internet addiction in adolescents from a gender perspective. Front Psychol 2019; 10:.
- Rotenstein LS, Ramos MA, Torre M, et al. Prevalence of depression, depressive symptoms, and suicidal ideation among medical students: a systematic review and meta-analysis. JAMA 2016; 316:2214–2236.
- 57. Ismail Z, Elbayoumi H, Fischer CE, et al. Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry 2017; 74:58–67.
- Korchia T, Achour V, Faugere M, et al. Sexual dysfunction in schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry 2023; 80:1110–1120.
- 59. Abdel-Salam DM, Alrowaili HI, Albedaiwi HK, et al. Prevalence of Internet addiction and its associated factors among female students at Jouf University, Saudi Arabia. J Egypt Public Health Assoc 2019; 94:12.
- Ademoyegun AB, Ibitoye AG, Afolabi J, et al. Can physical activity attenuate the impact of internet addiction on anxiety in young adults? A moderation analysis, J Affect Disord Rep 2024; 16:.
- Adhikari K, Dahal S, Ghimire A, et al. Internet addiction and associated factors among undergraduates. J Nepal Health Res Counc 2022; 20:131–137.
- 62. Al-Gamal E, Alzayyat A, Ahmad MM. Prevalence of internet addiction and its association with psychological distress and coping strategies among university students in Jordan. Perspect Psychiatric Care 2016; 52:49–61.
- Ali R, Mohammed N, Aly H. Internet addiction among medical students of Sohag University, Egypt. J Egypt Public Health Assoc 2017; 92:86–95.
- 64. Amano A, Ahmed G, Nigussie K, et al. Internet addiction and associated factors among undergraduate students of Jimma University; Jimma, South West Ethiopia, institutional based cross-sectional study. BMC Psychiatry 2023; 23:721.
- **65.** Angane AY, Kadam KS, Ghorpade GS, *et al.* Unraveling the net of selfesteem, stress, and coping skills in the era of internet addiction. Ann Indian Psychiatry 2020; 4:.
- 66. Ansari H, Ansari-Moghaddam A, Mohammadi M, et al. Internet addiction and happiness among medical sciences students in Southeastern Iran. Health Scope 2016; 5:.

- 67. Araby EM, El-Raouf MSEA, Eltaher SM. Does the nature of the study affect internet use and addiction? Comparative- study in Benha University, Egypt. Syst Rev Pharm 2020; 11:465–471.
- 68. Asrese K, Muche H. Online activities as risk factors for problematic internet use among students in Bahir Dar University, North West Ethiopia: a hierarchical regression model. PLoS One 2020; 15:.
- 69. Aznar-Díaz I, Romero-Rodríguez JM, García-González A, et al. Mexican and Spanish university students' Internet addiction and academic procrastination: correlation and potential factors. PLoS One 2020; 15:e0233655.
- Banal R, Bharti M, Menia A. To study association of sleep quality and internet addiction among medical students. JK Practition 2023; 28:86–90.
- Bener A, Bhugra D. Lifestyle and depressive risk factors associated with problematic Internet use in adolescents in an Arabian Gulf culture. J Addict Med 2013; 7:236–242.
- Bhandari PM, Neupane D, Rijal S, et al. Sleep quality, internet addiction and depressive symptoms among undergraduate students in Nepal. BMC Psychiatry 2017; 17:106.
- Biolcati R, Mancini G, Trombini E. Brief report: the influence of dissociative experiences and alcohol/drugs dependence on Internet addiction. Mediterranean J Clin Psychol 2017; 5:.
- 74. Bisen SS, Deshpande Y. Prevalence, predictors, psychological correlates of internet addiction among college students in India: a comprehensive study. Anadolu Psikiyatri Dergisi 2020; 21:117–123.
- Brito AB, Lima CdA, Brito KDP, et al. Prevalence of Internet addiction and associated factors in students. Estudos Psicol 2023; 40:.
- 76. Cai P, Wang J, Ye P, et al. Physical exercise/sports ameliorate the internet addiction from college students during the pandemic of COVID-19 in China. Front Public Health 2023; 11:1310213.
- 77. Cai H, Xi HT, Zhu Q, et al. Prevalence of problematic Internet use and its association with quality of life among undergraduate nursing students in the later stage of COVID-19 pandemic era in China. Am J Addict 2021; 30:585–592.
- Cao H, Sun Y, Wan Y, et al. Problematic Internet use in Chinese adolescents and its relation to psychosomatic symptoms and life satisfaction. BMC Public Health 2011; 11:802.
- 79. Chen YL, Liu X, Huang Y, et al. Association between child abuse and health risk behaviors among Chinese college students. J Child Family Studies 2017; 26:1380–1387.
- 80. Cincik M, Cicek G, Singin RHO. Determination of the internet addiction among students of the faculty of sports sciences and the faculty of health sciences and its association to physical activity. Health Prob Civiliz 2023; 17:179–190.
- Condori- Meza IB, Dávila-Cabanillas LA, Challapa-Mamani MR, et al. Problematic internet use associated with symptomatic dry eye disease in medical students from Peru. Clin Ophthalmol 2021; 15:4357–4365.
- Corrêa Rangel T, Falcão Raposo MC, Sampaio Rocha-Filho PA. Internet addiction, headache, and insomnia in university students: a cross-sectional study. Neurol Sci 2022; 43:1035–1041.
- Demenech LM, Domingues MR, Muller RM, et al. Internet addiction and depressive symptoms: a dose-response effect mediated by levels of physical activity. Trends Psychiatry Psychother 2023; 45:.
- Dhamnetiya D, Singh S, Jha RP. Correlates of problematic internet use among undergraduate medical students of Delhi. BMC Psychiatry 2021; 21:.
- 85. Ehsan A, Iqbal F, Rao MA. Frequency and risk factors of internet addiction in medical students: a cross-sectional study. J Pak Med Assoc 2021; 71:2111.
- 86. Ercan S, Acar HT, Arslan E, et al. Effect of internet addiction on sleep quality, physical activity and cognitive status among university students. J Turk Sleep Med Turk UYKU Tibbi Dergisi 2021; 8:49–56.
- Esen PY, Kutlu R, Cihan FG. Internet addiction, substance use and alexithymic dimensions in two different faculties' students. Central Eur J Public Health 2021; 29:209–216.
- 88. Feizy F, Sadeghian E, Shamsaei F, et al. The relationship between internet addiction and psychosomatic disorders in Iranian undergraduate nursing students: a cross-sectional study. J Addict Dis 2020; 38:164–169.
- Gedam SR, Shivji IA, Goyal A, et al. Comparison of internet addiction, pattern and psychopathology between medical and dental students. Asian J Psychiatry 2016; 22:105–110.
- George M, Ahmed MS, George N, et al. Internet: a double-edged sword? A cross-sectional study. Indian J Med Spec 2019; 10:126–130.
- Ghamari F, Mohammadbeigi A, Mohammadsalehi N, *et al.* Internet addiction and modeling its risk factors in medical students, iran. Indian J Psychol Med 2011; 33:158–162.
- 92. Ghosh S, Chatterjee S. Assessment of internet addiction among undergraduate medical students: a cross-sectional study in a medical college of Kolkata. J Clin Diagn Res 2018; 12:VC05–VC09.
- 93. Güneş M, Demirer B, Şimşek A. The relationship between internet addiction with eating disorders and musculoskeletal health among university students. J Public Health (Germany) 2023; 31:2115–2121.
- 94. Guo L, Shi G, Du X, et al. Associations of emotional and behavioral problems with Internet use among Chinese young adults: the role of academic performance. J Affect Disord 2021; 287:214–221.

- 95. Gupta A, Khan AM, Rajoura OP, *et al.* Internet addiction and its mental health correlates among undergraduate college students of a university in North India. J Family Med Prim Care 2018; 7:721–727.
- 96. Hammad MA, Alyami MHF, Awed HS. The association between internet addiction and sleep quality among medical students in Saudi Arabia. Ann Med 2024; 56:2307502.
- Haque M, Rahman NAA, Azim MA, et al. Internet use and addiction among medical students of Universiti Sultan Zainal Abidin, Malaysia. Psychol Res Behav Manage 2016; 9:297–307.
- 98. Hussain M, Awais M, Ejaz S. Prevalence of internet addiction among Gujranwala medical college students: a cross sectional study. Indo Am J Pharm Sci 2018; 5:8025–8029.
- 99. Ibrahim AK, Fouad I, Kelly SJ, et al. Prevalence and determinants of Internet addiction among medical students and its association with depression. J Affect Disord 2022; 314:94–102.
- 100. Jaafar NS, Idris IB, Ahmad N, et al. Internet addiction and its association with depression, anxiety, and stress symptoms among allied health students in Malaysia. Med J Indonesia 2022; 31:56–61.
- 101. Jagan P, Pauline CJ, Kumar SS. Dysfunctional internet behavior patterns and its relation to oral health status among adolescents in Coimbatore: a cross-sectional study. J Indian Assoc Public Health Dentist 2023; 21:375–379.
- 102. Jain A, Sharma R, Gaur KL, et al. Study of internet addiction and its association with depression and insomnia in university students. J Family Med Prim Care 2020; 9:1700–1706.
- 103. Jaiswal A, Manchanda S, Gautam V, et al. Burden of internet addiction, social anxiety and social phobia among University students, India. J Family Med Prim Care 2020; 9:3607–3612.
- 104. Kandri TA, Bonotis KS, Floros GD, et al. Alexithymia components in excessive internet users: a multifactorial analysis. Psychiatry Res 2014; 220:348–355.
- 105. Karimy M, Parvizi F, Rouhani MR, et al. The association between internet addiction, sleep quality, and health-related quality of life among Iranian medical students. J Addict Dis 2020; 38:317–325.
- 106. Kashfi SM, Karami H, Jafari F, et al. Internet addiction and sleep disorders among medical students. ScientificWorldJournal 2023; 2023:6685676.
- 107. Khan MA, Shabbir F, Rajput TA. Effect of gender and physical activity on internet addiction in medical students. Pakistan J Med Sci 2017; 33:191–194.
- 108. Khanbabaei S, Abdollahi MH, Shahgholian M. The predictive role of working memory and impulsivity in internet addiction, an investigation about the mediating role of time perception. Person Individual Diff 2022; 185:.
- 109. Khazaie H, Lebni JY, Abbas J, et al. Internet addiction status and related factors among medical students: a cross-sectional study in Western Iran. Commun Health Equity Res Policy 2023; 43:347–356.
- Ksiksou J, Maskour L, Alaoui S. The relationship between Internet addiction and personality traits in Moroccan nursing students. Acta Neuropsychol 2023; 21:177–189.
- 111. Kumari MP, Kommisetty V, Sakthivel M, et al. A study on prevalence of internet addiction among students of a private medical college, Kanchipuram. J Pharm Negative Results 2022; 13:2159–2165.
- 112. Lan NTM, Kyesun L, Dung V, et al. Internet addiction among university students and its associated factors: a cross-sectional study among college students in Hanoi, Vietnam. Syst Rev Pharm 2020; 11:590–596.
- 113. Latifeh Y, Alkhatib Y, Hmidouch M, et al. Prevalence of internet addiction among Syrian undergraduate medical students. Medicine (Baltimore) 2022; 101:e32261.
- 114. Lu L, Jian S, Dong M, et al. Childhood trauma and suicidal ideation among Chinese university students: the mediating effect of Internet addiction and school bullying victimisation. Epidemiol Psychiatr Sci 2020; 29:e152.
- 115. Mahmoud OA, Hadad S, Sayed TA. The association between Internet addiction and sleep quality among Sohag University medical students. Middle East Current Psychiatry-Mecpsych 2022; 29:.
- 116. Mamun MA, Hossain MS, Moonajilin MS, et al. Does loneliness, self-esteem and psychological distress correlate with problematic internet use? A Bangladeshi survey study. Asia Pac Psychiatry 2020; 12:e12386.
- 117. Mboya IB, Leyaro BJ, Kongo A, et al. Internet addiction and associated factors among medical and allied health sciences students in Northern Tanzania: a cross-sectional study. BMC Psychol 2020; 8:.
- 118. Mellouli M, Zammit N, Limam M, et al. Prevalence and predictors of internet addiction among college students in Sousse, Tunisia. J Res Health Sci 2018; 18:e00403.
- **119.** Mengistu N, Tarekegn D, Bayisa Y, *et al.* Prevalence and factors associated with problematic internet use among Ethiopian undergraduate university students in 2019. J Addict 2021; 2021:6041607.
- 120. Miskulin I, Simic I, Pavlovic N, et al. Personality traits of Croatian University Students with internet addiction. Behav Sci 2022; 12:.
- 121. Mohamed KO, Soumit SM, Elseed AA, et al. Prevalence of internet addiction and its associated risk factors among medical students in Sudan: a crosssectional study. Cureus 2024; 16:e53543.
- **122.** Mohammadbeigi A, Valizadeh F, Mirshojaee SR, *et al.* Self-rated health and Internet addiction in Iranian medical sciences students; prevalence, risk factors and complications. Int J Biomed Sci 2016; 12:65–70.

- 123. Muche H, Asrese K. Prevalence of internet addiction and associated factors among students in an Ethiopian university: a cross-sectional study. J Soc Work Pract Addict 2021.
- 124. Nagarajappa R, Dhar U, Satyarup D, et al. Impact of Internet addiction on academic performance of undergraduate dental students of Bhubaneswar, India. Pesquisa Brasil Odontopediatr Clin Integrada 2023; 23:.
- 125. Oliveira AP, Nobre JR, Luis H, et al. Social media use and its association with mental health and Internet addiction among Portuguese higher education students during COVID-19 confinement. Int J Environ Res Public Health 2023; 20.
- 126. Oluwole LO, Obadeji A, Dada MU. Surfing over masked distress: Internet addiction and psychological well being among a population of medical students original. Asian J Soc Health Behav 2021; 4:56–61.
- 127. Orsolini L, Yılmaz-Karaman IG, Longo G, et al. Sex-differences in hikikomori traits as predictors of problematic internet use in Italian university students. J Psychiatr Res 2022; 155:211–218.
- 128. Parmar JS, Kumbhakar S. Prevalence of internet addiction and its impact on selected psychological parameters among UG nursing students. J Educ Health Promot 2022; 11:407.
- 129. Paudel L, Sharma P, Kadel AR, et al. Association between Internet addiction, depression and sleep quality among undergraduate students of medical and allied sciences. J Nepal Health Res Counc 2021; 19:543–549.
- 130. Pramanik T, Sherpa MT, Shrestha R. Internet addiction in a group of medical students: a cross sectional study. Nepal Med Coll J 2012; 14:46–48.
- 131. Rajasekhar T, Setty Naveen KH, Raghav P, et al. Exploring internet addiction and its associated factors among college students in Western Rajasthan, India: a mixed-methods study. Indian J Psychiatry 2023; 65:839–852.
- 132. Ramón-Arbués E, Granada-López JM, Martínez-Ábadía B, et al. Prevalence and factors associated with problematic internet use in a population of Spanish University Students. Int J Environ Res Public Health 2021; 18:.
- 133. Ranjan LK, Gupta PR, Srivastava M, et al. Problematic internet use and its association with anxiety among undergraduate students. Asian J Soc Health Behav 2021; 4:137–141.
- 134. Romero-Rodríguez JM, Marín-Marín JA, Hinojo-Lucena FJ, et al. An explanatory model of problematic Internet use of Southern Spanish University Students. Soc Sci Comput Rev 2022; 40:1171–1185.
- 135. Rosliza AM, Ragubathi MN, Yusoff M, et al. Internet addiction among undergraduate students: evidence from a Malaysian Public University. Int Med J Malaysia 2018; 17:41–48.
- **136.** Sahraian A, Hedayati SB, Mani A, *et al.* Internet addiction based on personality characteristics in medical students. Shiraz E Med J 2016; 17:.
- 137. Salama B. Prevalence and associated factors of internet addiction among undergraduate students at Al-Beheira Governorate, Egypt. Int J Public Health 2020; 65:905–910.
- 138. Samaha A, Fawaz M, Eid A, et al. Data on the relationship between internet addiction and stress among Lebanese medical students in Lebanon. Data Brief 2019; 25:104198.
- 139. Sayyah M, Khanafereh S. Prevalence of internet addiction among medical students: a study from Southwestern Iran. Cent Eur J Public Health 2019; 27:326–329.
- 140. Selvamani I, Natarajan V, Ahamed KFF, et al. Prevalence of internet addiction and its association with depression, anxiety and stress in medical students during the Covid-19 pandemic. J Pharm Negative Results 2022; 13:4102–4107.
- 141. Seo EH, Kim SG, Lee SK, et al. Internet addiction and its associations with clinical and psychosocial factors in medical students. Psychiatry Investig 2021; 18:408–416.
- 142. Shehata WM, Abdeldaim DE. Internet addiction among medical and nonmedical students during COVID-19 pandemic, Tanta University, Egypt. Environ Sci Pollut Res Int 2021; 28:59945–59952.
- 143. Shi M, Du TJ. Associations of personality traits with internet addiction in Chinese medical students: the mediating role of attention-deficit/hyperactivity disorder symptoms. BMC Psychiatry 2019; 19:183.
- 144. Siddik MAB, Ali A, Miah S, et al. Psychological disorders among college going students: a post Covid-19 insight from Bangladesh. J Affect Disord Rep 2024; 15:.
- 145. Simcharoen S, Pinyopornpanish M, Haoprom P, et al. Prevalence, associated factors and impact of loneliness and interpersonal problems on internet addiction: a study in Chiang Mai medical students. Asian JPsychiatry 2018; 31:2–7.
- 146. Singh J, Pal T, Chandra P. The prevalence of internet addiction among the students in a Western U.P. medical college. Indian J Public Health Res De 2017; 8:55–60.
- 147. Tahir MJ, Malik NI, Ullah I, et al. Internet addiction and sleep quality among medical students during the COVID-19 pandemic: a multinational crosssectional survey. PLoS One 2021; 16:e0259594.
- 148. Tayhan Kartal F, Yabanci Ayhan N. Relationship between eating disorders and internet and smartphone addiction in college students. Eating Weight Disord 2021; 26:1853–1862.
- 149. Tenzin K, Dorji T, Gurung MS, et al. Prevalence of internet addiction and associated psychological co-morbidities among college students in Bhutan. JNMA J Nepal Med Assoc 2018; 56:558–564.

- 150. Torabi M, Shahravan A, Bahabin A, et al. Internet addiction among Iranian students of medical sciences. Pesq Brasil Odontopediatr Clin Integr 2020; 20:1–7.
- 151. Umeta GT, Regasa SD, Taye GM, et al. Prevalence of internet addiction and its correlates among regular undergraduate medicine and health science students at Ambo university cross-sectional study. Subst Abuse Res Treat 2022; 16:.
- 152. Wang LG, Tao T, Fan CL, et al. The association between Internet addiction and both impulsivity and effortful control and its variation with age. Addict Res Theory 2017; 25:83–90.
- 153. Wang Y, Zhao Y, Liu L, et al. The current situation of Internet addiction and its impact on sleep quality and self-injury behavior in Chinese medical students. Psychiatry Investig 2020; 17:237–242.
- 154. Yadav S, Arora S, Chaudhary S, *et al.* Prevalence and predictors of Internet addiction among North India Health Science Students. J Pharm Negative Results 2022; 13:116–121.

- 155. Yang G, Cao J, Li Y, et al. Association between Internet addiction and the risk of musculoskeletal pain in Chinese college freshmen - a cross-sectional study. Front Psychol 2019; 10:1959.
- 156. Ye YL, Wang PG, Qu GC, *et al.* Associations between multiple health risk behaviors and mental health among Chinese college students. Psychol Health Med 2016; 21:377–385.
- 157. Younes F, Halawi G, Jabbour H, et al. Internet addiction and relationships with insomnia, anxiety, depression, stress and self-esteem in university students: a cross-sectional designed study. PLoS One 2016; 11:.
- 158. Zenebe Y, Kunno K, Mekonnen N, et al. Prevalence and associated factors of internet addiction among undergraduate university students in Ethiopia: a community university-based cross-sectional study. BMC Psychol 2021; 9:.
- 159. Zhao Y, Jiang Z, Guo S, et al. Association of symptoms of attention deficit and hyperactivity with problematic Internet use among university students in Wuhan, China during the COVID-19 pandemic. J Affect Disord 2021; 286:220–227.